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ABSTRACT 

The thermomass theory regards heat owning mass-energy duality, exhibiting energy-like features in conversion and mass-like features in transfer 
processes. The equivalent mass of thermal energy is determined by the mass-energy equivalence of Einstein, which therefore leads to the inertia of 
heat in transfer. In this work, we build up a thermomass gas model based on this theory to describe the fluid-flow-like heat conduction process in a 
medium. The equation of state and the governing equations for transport for the thermomass gas have been derived based on methodologies of the 
classical mechanics since the drift speed of thermomass gas is generally far lower than the speed of light. We therefore present the general heat 
conduction law to describe the relationship between the heat flux and the temperature fields. The general law provides us a new viewpoint to 
understand the previous laws for heat conduction, such as the Fourier’s law and the CV (Cattaneo-Vernotte) model. The general law will degenerate 
to the Fourier’s law when all the thermal inertial effects are negligible or to the CV model for the unsteady heat conduction when the space-
dependent inertial effects are negligible. The non-Fourier conductions, both the ultrafast heating/cooling and the ultrahigh-rate steady-state ones, 
have been studied using the general heat conduction law with the thermal inertial effects fully considered, and compared with the previous 
theoretical models and experimental data.  
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1. INTRODUCTION 

In physics and thermodynamics, heat is generally known as the process 
of energy transfer. Heat conduction, as the most significant means of 
heat transfer in media, has been studied for over two hundred years. As 
early as 1822, Joseph Fourier, a French mathematical and physical 
scientist, pointed out in his famous monograph “Analytical Theory of 
Heat” that “these (the effects of heat) make up a special order of 
phenomena, which cannot be explained by the principles of motion and 
equilibrium”, and “this part of natural philosophy cannot be connected 
with dynamical theories, it has principles peculiar to itself” (Fourier, 
1955). He proposed the famous Fourier’s law of heat conduction, 
stating that the time rate of heat transfer through a material is 
proportional to the negative gradient of temperature and to the area at 
right angles, through which the heat is flowing. The differential form of 
the Fourier's Law of heat conduction is 
 

k T= − ∇q  (1) 
 
where q  is the local heat flux, k  is the  thermal conductivity, and T  
is the local temperature. The Fourier’s law is very simple in 
mathematics and has been widely used in engineering applications and 
in most scientific research at life scale, even though it is only an 
empirical relationship.  

However, when the temporal or spatial scale goes down far from 
normal, the applicability of the Fourier’s law may be problematic. For 
example, for the transient heat conduction process the Fourier’s law 
leads to an unphysical infinite heat propagation speed within the 
continuum field, because of its parabolic characteristics in 
mathematical form, which is clearly in contradiction with the theory of 
relativity. To overcome this contradiction of the Fourier’s law, 
Cattaneo (Cattaneo, 1958) as a pioneer, Vernotte (Vernotte, 1958), and 
subsequently several others (Chester, 1963; Guyer and Krumhans.Ja, 
1966; Maurer, 1969) developed a new heat conduction model, which is 
termed as CV (Cattaneo-Vernotte) model, to modify the Fourier’s law 

 

CV k T
t

τ ∂+ = − ∇
∂
q

q  (2) 

 
where CVτ  denotes the relaxation time and t is time. This model 

switches the Fourier’s equation from a parabolic equation to a 
hyperbolic one for the transient heat conduction process. The additional 
term in the CV model includes a derivative of the heat flux with respect 
to time, making the heat propagation speed finite. Hence, the wave 
nature of heat is implied, and new phenomena such as thermal 
resonance (Tzou, 1991; Xu and Wang, 2002) and thermal shock waves 
(Tzou, 1989) have been therefore found and studied. Several 
researchers have proved in both theory and experiment that the 
heat pulse propagates in continuum media as waves with a finite 
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speed (Brorson, Fujimoto et al., 1987; Qiu and Tien, 1994; 
Tzou, 1995). Later, Gurtin and Pipkin (Gurtin and Pipkin, 1968) and 
Coleman et al. (Coleman, Fabrizio et al., 1982) deduced more 
complicated heat conduction equations similar to the CV model. 
However, there are two significant drawbacks in the CV-type models. 
First, such models are ad hoc mathematical approximations rather than 
physics-based models. The physical reality or significance of the 
induced parameters are not clear (Joseph and Preziosi, 1989). Second, 
the hyperbolic equation can violate the second law of thermodynamics. 
For example, consider an infinitely long wire conductor, with a heat 
source at the origin, and measure temperature at distances significantly 
remote from origin. If the heat source at origin varies with a frequency 
much higher than the relaxation time (i.e. faster than the speed of 
second sound) then the hyperbolic equation admits a temperature field 
in which heat would appear to be moving from cold to hot, in violation 
of the second law. This contradiction has been demonstrated in more 
mathematically rigorous forms in (Rubin, 1992; Bai and Lavine, 1995; 
Korner and Bergmann, 1998; Ali, 1999; Ali and Zhang, 2005). To solve 
the ultrafast heating on metallic films, Qiu and Tien (Qiu and Tien, 
1993; Qiu and Tien, 1994) derived a phenomenological hyperbolic two-
step (HTS) model when the heating duration is comparable to the 
electron-phonon thermal relaxation time. Tzou et al. (Tzou, 1995; Tzou, 
1995; Tzou and Zhang, 1995; Tzou and Chiu, 2001) developed 
alternatively a dual-phase-lag model (DPL) to describe the thermal 
relaxation and thermalization behaviors in the ultrafast heating process 
in the electron gas. 

Meanwhile, the Fourier’s law often meets challenges at nanoscale 
where the microscale energy transport plays a very important role for 
material design (Hochbaum, Chen et al., 2008; Vining, 2008) or novel 
actuators (Barreiro, Rurali et al., 2008). Several theoretical and 
experimental studies have reported nanoscale heat transfer behavior 
deviating significantly from those at the normal scale (Fujii, Zhang et 
al., 2005; Mingo and Broido, 2005; Chen, Hochbaum et al., 2008; 
Donadio and Galli, 2009). Two distinguished mechanisms dominate 
such deviations respectively. One is caused by the atomistic effect, 
where the length scale in the direction of heat transfer is comparable to 
the molecular mean free path. In this case, the continuum assumption is 
not valid anymore and the energy transport has to be described by 
molecular dynamics or even quantum dynamics. The other mechanism 
lies in the high rate of heat flux resulted from extremely high 
temperature gradient and super low cross-section area even though the 
continuum assumption is still valid. The latter one is of great interests 
because of much more potential technical and engineering applications, 
but still lack of fundamental understanding. 

This article is aiming to provide a common strategy to derive the 
general heat conduction law based on the thermomass theory (Guo, 
2006; Zhang, Cao et al., 2006; Guo and Zhu, 2007). By presenting the 
heat conduction equation under the linear resistance assumption, we 
analyze the transient heat conduction process and the apparent thermal 
conductivity of one-dimensional nanomaterials which is a non-Fourier 
steady heat conduction process, and compare the results with the 
previous theoretical and experimental data. 

 

2. THERMOMASS GAS MODEL 

Heat has been generally regarded as a process of energy transfer, 
instead of substance transport, since the famous Caloric-Dynamic 
argument in the 19th century(Mendoza, 1961). However, theoretical and 
experimental research since the early of the 20th century (Nernst, 1918; 
Onsager, 1931; Tzou, 1995) has shown that heat owns “inertia”. 
Tolman (Tolman, 1930) first found that heat has a weight based on the 
Einstein’s relativity theory, which was consequently supported by other 
researchers (Eckart, 1940; Landau and Lifshitz, 1959). Recently Guo 
(Guo, 2006) has proposed a thermomass (also termed as thermal mass) 
theory. Based on the thermomass theory, heat has the mass-energy 

duality, exhibiting energy-like features in conversion processes and 
mass-like characteristics in transfer processes. The mass of heat is 
determined by the mass-energy equivalence of Einstein (Einstein, 
Lorentz et al., 1952), which therefore leads to the “inertia” and 
“weight” of heat in heat transfer. Because the mass of heat is extremely 
small (10-16 kg for 1 J heat), it has been seldom measured but may show 
its significance in ultrafast heating or ultrahigh-rate heat transfer 
processes. Distinguished from the traditional Caloric theory, the 
thermomass theory treats heat as a flux of thermomass. 

In this work, we develop a thermomass gas model based on the 
thermomass theory. We assume that the heat transfer process can be 
treated as a thermomass gas flow in medium, driven by a thermomass 
pressure gradient (a potential field). The thermomass gas is a gas-like 
collection of massive thermons, which is defined as a unit quasi-
particle carrying the thermal energy. The thermons are supposed to be 
attached on the fundamental particles (molecules or atoms) of the 
medium for gases and liquids. For solids, the thermomass gas will be 
the phonon gas for crystals, attached on the electron gas for pure 
metals, or just between both for most of other solids. To concern the 
heat transfer behavior in medium, we only focus on the macroscopic 
flow characteristics of the thermomass gas rather than the details of 
each single thermon, and therefore we suppose the thermomass gas as a 
continuum and its transport process can be described by the classical 
Newton’s mechanics. 

2.1 Equation of State 

Similar as the real gas, the equation of state (EOS) is complicated for 
the thermomass gas, especially for the liquids. A general form of the 
EOS of the thermomass gas can be simply written as a function of 
 

T T( , , , ) 0F p Tρ ξ =  (3) 

 

where Tp  is the thermomass pressure, Tρ  the density of thermomass 

gas, T  the local temperature, and  ξ  denotes the effects of interaction 

between thermons. When the interaction between thermons is 
negligible, the EOS may have an explicit form. Guo has derived the 
EOS for the thermomass gas in the ideal gas (Guo, 2006) 
 

T Tp CTκρ=  (4a) 

 
where κ  denotes the ratio of specific heats and C  is the specific heat 
capacity. Guo et al. (Guo, Cao et al., 2007; Guo and Hou, 2010) also 
deduced the EOS of phonon gas in solid based on the Debye state 
equation (Tien and Lienhard, 1979): 
 

T Tp CTγρ=  (4b) 

 
where  γ  is the Grüneisen constant. The density of thermomass gas is 

related to the medium density by(Guo, 2006; Guo, Cao et al., 2007) 
 

T 2

CT

c

ρρ =  (5) 

 
where c  is the speed of light (3×108 m/s) and ρ  the density of 

medium. It is very interesting to find that the EOS of the phonon gas in 
crystal is in a very similar form as that for the ideal gas (Guo, 2006) 
except for the proportional parameter (κ or γ ). Therefore we propose 

here a general form of EOS for ideal thermomass gas as 
 

T Tp CTαρ=  (6) 
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with α  as a proportional parameter whose value is different for 
different state of medium. For metals, when the effect of the static 
electric interaction between free electrons is negligible for the thermon 
transport, the EOS of Eq. (6) is also available (Wang and Guo, 2010). 
For the thermomass gas in liquid, Eq. (6) might provide a rough 
approximation as well. 

2.2 Governing Equations for Transport 

Eq. (6) indicates that a higher temperature leads to a higher thermomass 
pressure, and that the thermomass gas will be driven to flow by a 
thermomass pressure difference. To derive the governing equations of 
the thermomass flow, we need to define the macroscopic velocity of 
thermomass gas flow first. Based on the thermomass theory, the mass 
flow rate of the thermomass gas can be expressed as 
 

2T T Tm
c

ρ= =q
u . (7) 

 
Eq. (7) yields the determination of the macroscopic drift velocity 

as 
 

T CTρ
= q

u . (8) 

 
Eq. (8) indicates that the macroscopic velocity of thermomass gas 

is identical to the transport velocity of heat flow, which is calculated by 
the heat flux divided by the thermal energy per volume. The value of 
this velocity is usually very small in our normal life. 

Let’s consider the thermomass gas flowing by a temperature 
difference in a medium without any internal heat source. Suppose the 
thermomass gas is in local equilibrium and the governing equations for 
the thermomass gas transport can be derived very similarly as the 
classical fluid mechanics. The continuity equation is 
 

( ) 0T
T Tt

ρ ρ∂ + ∇ ⋅ =
∂

u . (9) 

 
The momentum equation is 
 

0T
T T T

D
p

Dt
ρ + ∇ + =u

f  (10) 

 
where D Dt  means the total derivative, and Tf  is the resistance force 

per unit volume when the thermomass gas flows through the medium. 

The total energy of the thermomass gas in a medium is just sum of 
the kinetic energy and the potential (pressure) energy, calculated by 
 

( )T T T T T

V

E u du dp dVρ= +  , (11) 

 
where V is the total volume of medium, 
 

2
T

U
V

c ρ
= , (12) 

 
with U representing the thermal energy in the medium. 

For most engineering cases, the drift velocity of the thermomass 
flow is very low and the kinetic energy is negligible compared with the 
potential energy in Eq. (11). Furthermore, if the temperature gradient is 
not high, the total energy of the thermomass gas can be calculated as 
 

2T

C
E UT

c
α=  (13) 

 
which is proportional to the entransy (Guo, Zhu et al., 2007) of the 
medium in heat transfer.  

Eq. (13) indicates that the physical essence of entransy is the 
(potential) energy of the thermomass. The entransy, or the potential 
energy of thermomass, will dissipate when heat transfers from the high 
to the low temperature (Guo, Zhu et al., 2007). Therefore it 
characterizes the irreversibility of heat transfer (Chen, Wang et al., 
2009). The principle of minimizing or maximizing the entransy 
dispersion is also valuable to optimize the transport network 
micorstructure (Chen, Wang et al., 2009; Liu, Wang et al., 2010). 

 

3. GENERAL LAW OF HEAT CONDUCTION AND 
DISCUSSION 

3.2 General Heat Conduction Equation and Its Linear 
Form 

Equations (9) and (10) describe the movement of the thermomass gas in 
media without any other artificial assumptions. Therefore, the 
substitutions of Eqs. (5), (6) and (8) into them yield the general heat 
conduction law in a continuum medium. For those with heat sources in 
the media, the law can be easily extended by adding a source term on 
the right-hand side of Eq. (9). Each of the equations and the parameters 
has a clear physical meaning and can be determined through 
measurement or analysis. The general heat conduction equation is much 
more complex in form compared with any other existing equations for 
heat conduction. Specially, for the one-dimensional case, Eq. (10) can 
be simplified as 
 

2

2

T q T

t T t CT x CT xρ ρ
∂ ∂ ∂ ∂− + −
∂ ∂ ∂ ∂
q q q q 2 22 0T

T
C T c

x
αρ ∂+ + =

∂
f  (14) 

 
The first four terms of Eq. (14) are derived from the total 

derivative of velocity of the thermomass gas, which reflect the thermal 
inertial effects. The fifth term is from the thermomass pressure driving 
effect, and the last term represents the resistance effect. 

When the velocity of thermomass gas flow ( Tu ) is very small 

(much lower than 1 m/s), the resistance is assumed to have a linear 
relationship with the velocity 
 

T Tf uβ=  (15) 

 
where β  is a parameter to be determined. Substitute Eq. (15) into Eq. 
(14), and the general law of heat conduction in Eq. (14) has to be 
consistent with the Fourier’s law in Eq. (1) as long as the inertial terms 
are neglected. The value of β  is therefore determined as 
 

2 3 2

2

2 C T

c k

αρβ =  (16) 

 
where k  is the thermal conductivity of the medium. This formulation 
of β  is also valid for 2D and 3D cases. 

Therefore the general law of heat conduction in one-dimensional 
materials under the linear resistance assumption can be further 
expressed as 
 

T 0
T T T

l C l bk k
t t x x x

τ ρ∂ ∂ ∂ ∂ ∂− + − + + =
∂ ∂ ∂ ∂ ∂
q q

q , (17) 
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where 
 

T 22

k

C T
τ

αρ
=  (18) 

 
is a characteristic time,  
 

( ) T T2
2

qk
l u

C CT
τ

α ρ
= =  (19) 

 
is a characteristic length, and 
 

2

2 3 32

q
b

C Tαρ
=  (20) 

 
is a dimensionless parameter for charactering flow compressibility of 
thermomass gas. For a heat flux q=104 W/m2 conducting in silicon at 
the room temperature, τT is on the order of 10-10 s, l on the order of 10-15 
m, and b on the order of 10-15. 

3.2 New Understanding of Fourier’s Law 

Equation (1) tells empirically that the heat flux is proportional to the 
temperature gradient in a heat conduction process. The general law 
based on the thermomass gas flow model provides us a brand-new 
viewpoint in mechanics to understand the Fourier’s law. From the 
determination process of β , we find that the general heat conduction 
law can degrade to the Fourier’s law on the conditions of (i) negligible 
inertial effects compared with the driving force (thermomass pressure 
gradient or temperature gradient); and (ii) small heat flux assumption 
leading to the linear relationship between the resistance and the 
velocity of the thermomass gas. The Fourier’s law essentially means 
the balance between the driving force and the resistant force in the 
thermomass fluid mechanics. Therefore the Fourier’s law will break 
down when the inertial effect is not negligible or the heat flux is not 
small enough. 

3.3 Transient non-Fourier conduction 

Let’s consider the unsteady non-Fourier’s heat conduction first. The 
ultrafast heating process has many important applications and has been 
studied by various thermal wave models as mentioned in the 
Introduction. The general heat conduction law, Eq. (17), indicates that 
it will degenerate to the same form as the CV model if the thermal 
inertial effects (the second to the forth terms) are negligible, even 
though the physical significances of the characteristic times are 
different from each other. The characteristic time in the CV model may 
represent the relaxation time for approaching the thermodynamic 
equilibrium, while the one in the thermomass gas model describes the 
lagging response from the temperature gradient to the heat flux. Their 
values may be very close for metals, or distinguished significantly for 
pure crystals. Thanks to their quite different physical significances, the 
two models have different predictions for the thermal wave propagation 
behavior.  

 
Fig. 1 Schematic of temperature response in a silicon film to one-side 

heat flux pulse 

Let us first consider the temperature response in a silicon thin film 
to a heat flux pulse from the left side. The schematic diagram is shown 
in Fig. 1. The film is 0.2 μm thick and the initial temperature is 300 K. 
The heat flux pulse on the left side can be expressed as 
 

A

0

2
(0, ) 1 cos

2

q t
q t

t

π  
= −     

, (21) 

 
when t0>t>0. In our simulation, we set qA=5×1011 W/m2 and t0=20 ps. 
The properties of the silicon film are: the density ρ=2330 kg/m3, the 
thermal conductivity k=163 W/m K, the specific heat C=500 J/kg K 
and the Gruneisen constant γ=1.96. These properties lead to the 
characteristic time of the thermomass gas model two order of 
magnitudes higher than that of the CV model. Fig. 2 compares the 
temperature response at different time points between the two models. 
The thermomass gas model predicts a much slower response and a 
much more heterogeneous temperature distribution in the silicon film.  

 

   
Fig. 2 Temperature distributions at different time points predicted by 

the two models. The parameters are ρ=2330 kg/m3, k=163 W/m 
K, C=657 J/kg K and γ=1.96. 

 
Second, consider the thermal wave response to the two-side 

temperature step in a metal where the characteristic times for the two 
models are equal. The schematic diagram is shown in Fig. 3. The metal 
medium is L in length, and at an initial temperature, T0. When time 
starts (t>0), the temperature at the two ends changes to Tw and holds. 
The equations can be consistently non-dimensionalized when 
L= 2k C CTρ . Fig. 4 compares the temperature distributions between 

the CV model and the general heat conduction law based on the 
thermomass theory at different time (t*= t/τ =0.4 or 0.8) for different 
boundary conditions (Tw

*= Tw/T0=0.9 or 0.3). The finite difference 
method was used to solve both models in their non-dimensional forms, 
with 10000 time steps, 1000 spatial grids. Fig. 4a and b shows the 
results when the boundary temperature step is small (ΔT*=1-Tw

*=0.1), 
and c and d shows the results for a high one (ΔT*=0.7). The results 
indicate that when the ΔT* is small, the temperature distributions from 
both models are similar, except for the more wavelet characteristics 
from the thermomass theory making the temperature distribution more 
fluctuating; otherwise when the ΔT* is high, the results from the 
thermomass theory deviate significantly from the CV model. 
Especially, Fig. 4d shows that when the two waves from the boundary 
temperature step meet, the CV model leads to an unphysical 
temperature distribution under zero, similar as reported in Ref. (Bai and 
Lavine, 1995; Korner and Bergmann, 1998), while the thermomass 
theory will result in a reasonable temperature distribution with 
considering the thermal inertial effects. 

 
Fig. 3 Schematic of temperature response to two-side temperature step  



Frontiers in Heat and Mass Transfer (FHMT), 1, 013004 (2010)
DOI: 10.5098/hmt.v1.1.3004

Global Digital Central
ISSN: 2151-8629

  5

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

x*

T
*

 

 

CV model

Thermomass theory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

x*

T
*

 

 

CV model

Thermomass theory

 
 

(a) Tw
*=0.9, t*=0.4;                    (b) Tw

*=0.9, t*=0.8; 
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(c) Tw
*=0.3, t*=0.4;                   (d) Tw

*=0.3, t*=0.8; 
 

Fig. 4 Thermal wave propagation behavior for different boundary 
conditions. The non-dimensional parameters are defined as 
x*=x/L, T*=T/T0, and t*=t/τ.  

3.4 High-rate steady non-Fourier conduction 

Generally the non-Fourier conduction is used to being referred to the 
ultrafast/transient heat conduction phenomena, which it is actually 
beyond. The general heat conduction equation, Eq. (14), indicates that 
the thermal inertial effect may be non-negligible for high-rate heating 
even at the steady state. Such an effect has never been well studied 
because of lack of corresponding theories. 

The thermomass gas model gives the heat conduction governing 
equations in one-dimensional materials by 
 

0
x

∂ =
∂
q

, (22) 

2 2
2

2

2
2 0

q T T C T
C T

CT x CT x x k

αραρ
ρ ρ

∂ ∂ ∂− + + =
∂ ∂ ∂

q q
q , (23) 

 
which lead to  
 

2

2 3 3
1 0

2

q T
k

C T xαρ
  ∂− + =  ∂ 

q  (24) 

 
Eq. (24) governs the high-rate steady non-Fourier heat conduction, 

with k representing the intrinsic thermal conductivity. The equation 
indicates that the effective thermal conductivity is lower than the 
intrinsic one when the thermal inertial effect is considered. When the 
heat flux is low, Eq. (24) will degenerate to the classical Fourier’s law 
for the steady-state heat conduction. Usually the effective thermal 
conductivity measured by experiments are defined as 
 

eff

qL
k

T
=

Δ
 (25) 

 
where L is the length of the material and ΔT the temperature difference. 

Fig. 5 shows the effective thermal conductivity varying with the 
length and the temperature of silicon nanowires for a given temperature 
difference (ΔT=100 K). The material properties used in the predictions 
are the same as those in Fig. 2. The average temperature is 110 K for 
Fig. 5a, and the nanowire length is 100 nm for Fig. 5b. The result in 
Fig. 5a indicate that the effective thermal conductivity of silicon 
nanowires decreases with the decreasing length for given temperatures 
of both ends. This result agrees qualitatively with other theoretical or 
numerical results (Fujii, Zhang et al., 2005; Mingo and Broido, 2005; 
Donadio and Galli, 2009). A shorter nanowire results in higher 
temperature gradient and higher thermal inertial effect, and therefore a 
lower effective thermal conductivity as a result. When the material is 
long enough, such longer than 10 μm for this case, the effective thermal 
conductivity is identical to the bulk one, which means the thermal 
inertial effect is negligible. Fig. 5b shows the effective thermal 
conductivity increases with the average temperature of the nanowire for 
give ΔT and L. This result agree qualitatively well with the 
experimental data in Ref. (Fujii, Zhang et al., 2005; Chen, Hochbaum 
et al., 2008; Hochbaum, Chen et al., 2008). 
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(b) Effective thermal conductivity vs. average temperature 

 
Fig. 5  The effective thermal conductivity changing with the length and 

the average temperature of silicon nanowaires for a given 
temperature difference (ΔT=100 K). The parameters used are 
ρ=2330 kg/m3, k=163 W/m K, C=500 J/kg K and γ=1.96. 

4. CONCLUSIONS 

(1) We have built up a thermomass gas model based on the thermomass 
theory, which regards heat owning mass-energy duality, exhibiting 
energy-like features in conversion and mass-like features in transfer 
processes. The equivalent mass of thermal energy is determined based 
on the mass-energy equivalence of Einstein, which therefore leads to 
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the inertia of heat in transfer. The thermomass gas model describes the 
heat conduction as fluid-flow-like process in a medium, and derives the 
equation of state and the governing equations for transport based on 
methodologies of the classical mechanics since the drift speed of the 
thermomass gas is far lower than the speed of light. We therefore 
present the general heat conduction law to describe the relationship 
between the heat flux and the temperature field.  
(2)  The general law degenerates to the Fourier’s law if all the thermal 
inertial effects are negligible, and therefore provides us a new 
viewpoint to understand the Fourier’s law for heat conduction. The 
Fourier’s law essentially means the balance between the driving force 
and the resistant force in the thermomass fluid mechanics. Therefore 
the Fourier’s law will break down when the inertial effect is not 
negligible or the linear resistance-velocity relationship is not valid. 
(3)  The general law degenerates to the same form as the CV model 
with different physical significances for the characteristic time, when 
the time dependent parts of the thermal inertial effects are only 
considered. The characteristic time in the thermomass gas model means 
the lagging time from the temperature gradient to the corresponding 
heat flux, while the one in the CV model is the relaxation time from the 
thermal non-equilibrium to the equilibrium state. This difference leads 
to very different predictions for the thermal wave propagation behavior. 
For the dielectrics, the values of the characteristic time may differ by 
two orders of magnitude, which results in a much slower temperature 
response to a heat pulse predicted by the thermomass gas model than 
that by the CV model. Even for the heat waves in metals, where the two 
characteristic times are very close, the thermal inertial effects also 
cause different features of heat wave propagation. Especially the 
unphysical temperature distribution under zero predicted by the CV 
model, when two low-temperature cooling waves meet, will not appear 
in the predictions by our general law. 
(4) The general law describes the steady-state non-Fourier heat 
conduction when the time dependent terms are neglected, with the 
thermal inertial effects considered. The predictions show that the 
effective thermal conductivity of silicon nanowires, which is smaller 
than the intrinsic one, decreases with the decreasing length for a given 
temperature difference between ends, and increases with the average 
temperature for a given length. These results agree qualitatively with 
the existing theoretical or experimental data. 
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NOMENCLATURE 

b Dimensionless parameter for thermal inertia 
c Light speed 
C Specific heat  
f Resistance 
k Thermal conductivity 
l Characteristic length 
u Velocity 
V Volume 
p Pressure 
q Heat flux 
u Velocity 
U Thermal energy 
t Time  
T Temperature 
x,y Coordinates 

 
Greek symbols 
α Parameter for EOS of thermomass gas 
β Proportionality coefficient for resistance 
γ Grüneisen constant 
κ Ratio of specific heats 
ξ Effects of interaction between thermons 
ρ Density  
τ 
 

Characteristic time 
 

Subscripts 
0 Initial 
CV CV model 
eff Effective 
T Thermomass gas 
w Wall 

REFERENCES 

Ali, A.H., 1999, "Statistical mechanical derivation of Cattaneo's heat 
flux law," Journal of Thermophysics and Heat Transfer 13(4), 544-546. 
doi: 10.2514/2.6474 

Ali, Y.M. and Zhang, L.C., 2005, "Relativistic heat conduction," 
International Journal of Heat and Mass Transfer 48, 2397-2406. 
doi: 10.1016/j.ijheatmasstransfer.2005.02.003 

Bai, C. and Lavine, A.S., 1995, "On hyperbolic heat-conduction and the 
2nd law of thermodynamics," Journal of Heat Transfer-Transactions of 
the ASME 117(2), 256-263. 
doi: 10.1115/1.2822514 

Barreiro, A., Rurali, R., et al., 2008, "Subnanometer motion of cargoes 
driven by thermal gradients along carbon nanotubes," Science 
320(5877), 775-778. 
doi: 10.1126/science.1155559 

Brorson, S.D., Fujimoto, J.G., et al., 1987, "Femtosecond electronic 
heat-transport dynamics in thin gold films," Physical Review Letters 
59(17), 1962-1965. 
doi: 10.1103/PhysRevLett.59.1962 

Cattaneo, C., 1958, "Sur Une Forme De Lequation De La Chaleur 
Eliminant Le Paradoxe Dune Propagation Instantanee," Comptes 
Rendus Hebdomadaires Des Seances De L Academie Des Sciences 
247(4), 431-433. 

Chen, Q., Wang, M.R., et al., 2009, "Irreversibility of Heat Conduction 
in Complex Multiphase Systems and Its Application to the Effective 
Thermal Conductivity of Porous Media," International Journal of 
Nonlinear Sciences and Numerical Simulation 10(1), 57-66. 

Chen, Q., Wang, M.R., et al., 2009, "Optimization Principle for 
Variable Viscosity Fluid Flow and Its Application to Heavy Oil Flow 
Drag Reduction," Energy & Fuels 23, 4470-4478. 
doi: 10.1021/ef900107b 

Chen, R., Hochbaum, A.I., et al., 2008, "Thermal conductance of thin 
silicon nanowires," Physical Review Letters 101(10), 105501. 
doi: 10.1103/PhysRevLett.101.105501 

Chester, M., 1963, "Second Sound in Solids," Physical Review 131(5), 
2013-2015. 
doi: 10.1103/PhysRev.131.2013 

Coleman, B.D., Fabrizio, M., et al., 1982, "On the thermodynamics of 
2nd sound in dieletric crystals," Archive for Rational Mechanics and 
Analysis 80(2), 135-158. 
doi: 10.1007/BF00250739 



Frontiers in Heat and Mass Transfer (FHMT), 1, 013004 (2010)
DOI: 10.5098/hmt.v1.1.3004

Global Digital Central
ISSN: 2151-8629

  7

Donadio, D. and Galli, G., 2009, "Atomistic Simulations of Heat 
Transport in Silicon Nanowires," Physical Review Letters 102(19), 
195901. 
doi: 10.1103/PhysRevLett.102.195901 

Eckart, C., 1940, "The thermodynamics of irreversible processes III 
Relativistic theory of the simple fluid," Physical Review 58(10), 919-
924. 
doi: 10.1103/PhysRev.58.919 

Einstein, A., Lorentz, H.A., et al., 1952, The principle of Relativity, 
Dover Publications, New York. 

Fourier, J., 1955, Analytical Theory of Heat, Dover Publications, New 
York. 

Fujii, M., Zhang, X., et al., 2005, "Measuring the thermal conductivity 
of a single carbon nanotube," Physical Review Letters 95(6), 065502. 
doi: 10.1103/PhysRevLett.95.065502 

Guo, Z.Y., 2006, "Motion and transfer of thermal mass-Thermal mass 
and thermon gas," Journal of Engineering Thermophysics 27(4), 631-
634. 

Guo, Z.Y., Cao, B.Y., et al., 2007, "State equation of phonon gas and 
conservation equations for phonon gas motion," Acta Physica Sinica 
56(6), 3306-3312. 

Guo, Z.Y. and Hou, Q.W., 2010, "Thermal Wave Based on the 
Thermomass Model," Journal of Heat Transfer-Transactions of the 
ASME 132(7), 072403. 
doi: 10.1115/1.4000987 

Guo, Z.Y. and Zhu, H.Y., 2007, "Motion and transfer of thermal mass-
conservation equations of thermon gas and Fourier's law," Journal of 
Engineering Thermophysics 28(1), 86-88. 

Guo, Z.Y., Zhu, H.Y., et al., 2007, "Entransy - A physical quantity 
describing heat transfer ability," International Journal of Heat and 
Mass Transfer 50(13-14), 2545-2556. 
doi: 10.1016/j.ijheatmasstransfer.2006.11.034 

Gurtin, M.E. and Pipkin, A.C., 1968, "A general theory of heat 
conduction with finite wave speeds," Archive for Rational Mechanics 
and Analysis 31(2), 113-126. 
doi: 10.1007/BF00281373 

Guyer, R.A. and Krumhans.Ja, 1966, "Solution of linearized phonon 
Boltzmann equation," Physical Review 148(2), 766-778. 
doi: 10.1103/PhysRev.148.766 

Hochbaum, A.I., Chen, R.K., et al., 2008, "Enhanced thermoelectric 
performance of rough silicon nanowires," Nature 451(7175), 163-U165. 
doi: 10.1038/nature06381 

Joseph, D.D. and Preziosi, L., 1989, "Heat waves," Reviews of Modern 
Physics 61(1), 41-73. 
doi: 10.1103/RevModPhys.61.41 

Korner, C. and Bergmann, H.W., 1998, "The physical defects of the 
hyperbolic heat conduction equation," Applied Physics a-Materials 
Science & Processing 67(4), 397-401. 
doi: 10.1007/s003390050792 

Landau, L.D. and Lifshitz, E.M., 1959, Fluid Mechanics, Pergamon 
Press, London. 

Liu, X.B., Wang, M.R., et al., 2010, "Minimum entransy dissipation 
principle for the optimization of transport networks," International 
Journal of Nonlinear Sciences and Numerical Simulation In Press. 
 
Maurer, M.J., 1969, "Relaxation Model for Heat Conduction in 
Metals," Journal of Applied Physics 40(13), 5123-5130. 

doi: 10.1063/1.1657362 

Mendoza, E., 1961, "A sketch for a history of early thermodynamics," 
Physics Today 14(2), 32-42. 
doi: 10.1063/1.3057388 

Mingo, N. and Broido, D.A., 2005, "Length dependence of carbon 
nanotube thermal conductivity and the "problem of long waves"," Nano 
Letters 5(7), 1221-1225. 
doi: 10.1021/nl050714d 

Nernst, W., 1918, Die Theoretischen Grundlagen Des Neuen 
Wärmesatzes. 

Onsager, L., 1931, "Reciprocal relations in irreversible processes. I," 
Physical Review 37(4), 405-426. 
doi: 10.1103/PhysRev.37.405 

Qiu, T.Q. and Tien, C.L., 1993, "Heat transfer mechanisms during 
short-pulse laser heating of metals," Journal of Heat Transfer-
Transactions of the Asme 115(4), 835-841. 
doi: 10.1115/1.2911377 

Qiu, T.Q. and Tien, C.L., 1994, "Femtosecond laser heating of multi-
layer metals—I. Analysis," International Journal of Heat and Mass 
Transfer 37(17), 2789-2797. 
doi: 10.1016/0017-9310(94)90396-4 

Rubin, M.B., 1992, "Hyperbolic heat conduction and the second law," 
International Journal of Engineering Science 30(11), 1665-1676. 
doi: 10.1016/0020-7225(92)90134-3 

Tien, C.L. and Lienhard, J.H., 1979, Statistical Thermodynamics, 
Hemisphere Publishing Corporation, Washington D.C. 

Tolman, R.C., 1930, "On the weight of heat and thermal equilibrium in 
general relativity," Physical Review 35(8), 0904-0924. 
doi: 10.1103/PhysRev.35.904 

Tzou, D.Y., 1989, "Shock wave formation around a moving heat source 
in a solid with finite speed of heat propagation," International Journal 
of Heat and Mass Transfer 32(10), 1979-1987. 
doi: 10.1016/0017-9310(889)990166-X 

Tzou, D.Y., 1991, "The resonance phenomenon in thermal waves," 
International Journal of Engineering Science 29(9), 1167-1177. 
doi: 10.1016/0020-7225(91)90119-N 

Tzou, D.Y., 1995, "Experimental support for the lagging behavior in 
heat propagation," Journal of Thermophysics and Heat Transfer 9(4), 
686-693. 
doi: 10.2514/3.725 

Tzou, D.Y., 1995, "The generalized lagging response in small-scale and 
high-rate heating " International Journal of Heat and Mass Transfer 
38(17), 3231-3240. 
doi: 10.1016/0017-9310(95)00052-B 

Tzou, D.Y. and Chiu, K.S., 2001, "Temperature-dependent thermal 
lagging in ultrafast laser heating," International Journal of Heat and 
Mass Transfer 44(9), 1725-1734. 
doi: 10.1016/S0017-9310(00)00215-5 

Tzou, D.Y. and Zhang, Y.S., 1995, "An analytical study on the fast-
transient process in small scales," International Journal of Engineering 
Science 33(10), 1449-1463. 
doi: 10.1016/0020-7225(94)00130-C 

Vernotte, P., 1958, "Les Paradoex De La Theorie Continue De 
Lequation De La Chaleur," Comptes Rendus Hebdomadaires Des 
Seances De L Academie Des Sciences 246(22), 3154-3155. 



Frontiers in Heat and Mass Transfer (FHMT), 1, 013004 (2010)
DOI: 10.5098/hmt.v1.1.3004

Global Digital Central
ISSN: 2151-8629

  8

Vining, C.B., 2008, "Materials science - Desperately seeking silicon," 
Nature 451(7175), 132-133. 
doi: 10.1038/451132a 

Wang, H.D. and Guo, Z.Y., 2010, "Thermon gas - the thermal energy 
carrier in gas and metal," Chinese Science Bullitin In Press. 

Xu, M.T. and Wang, L.Q., 2002, "Thermal oscillation and resonance in 
dual-phase-lagging heat conduction," International Journal of Heat and 
Mass Transfer 45(5), 1055-1061. 
doi: 10.1016/S0017-9310(01)00199-5 

Zhang, Q.G., Cao, B.Y., et al., 2006, "Motion and transfer of thermal 
mass-Equation of state for thermon gas," Journal of Engineering 
Thermophysics 27(6), 908-910. 

 
 


