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ABSTRACT 

We present a calculation of the thermally generated electromagnetic flux propagating along the in-plane direction of a polar, thin film. The approach 

is based on fluctuational electrodynamics and the fluctuation-dissipation theorem. We find that for silicon carbide films between 5 nm and 100 nm 

thick, the thinner films transport more in-plane flux due to the long propagation length of the anti-symmetric surface phonon-polariton mode.  

Comparison of results obtained from the fluctuation-dissipation approach and the kinetic theory approach shows favorable agreement. 

Keywords: heat conduction, phonon-polaritons, surface waves,thermal radiation,  thin films 

 

                                                           
* Corresponding author: gchen2@mit.edu 

1. INTRODUCTION 

Thermal conductivity is generally observed to decrease in structures 

with small length scales due to increased scattering of the heat carriers 

by interfaces and boundaries (Cahill et al., 2003; Goodson, 1996; Chen, 

2001). These classical size effects become important when the 

characteristic dimension of the structure is smaller than the phonon 

mean free path. Recovery of this reduction in thermal conductivity is of 

interest in optoelectronics and microprocessors where heat dissipation 

is becoming one of the limiting factors in performance. Surface 

polaritons may provide a channel for this recovery.  

Surface polaritons are hybrid electromagnetic waves that are the 

result of photons coupling to an elementary particle or excitation, such 

as an electron, phonon, or magnon. It is well-known that surface 

polaritons have long propagation lengths (Mills, 1975; Schoenwald et 

al., 1973), particularly on thin films (Burke et al., 1986), which in turn 

can lead to large in-plane energy flux (Chen et al., 2005), and also to 

increased heat transfer in out-of-plane near-field radiation (Carminati 

and Greffet, 1999; Mulet et al., 2001; Narayanaswamy and Chen, 2003; 

Shen et al., 2009). Additionally, in nanostructures surface effects are 

more important than volumetric effects due to a high surface area to 

volume ratio. This also suggests that surface polaritons may play an 

important role in energy transport along films with nanoscale thickness.  

We present a calculation of the thermal energy flux propagating 

along the in-plane direction of a thin film via surface phonon-

polaritons. Our approach is based on fluctuational electrodynamics, 

which makes use of the fluctuation-dissipation theorem and dyadic 

Green’s functions. We find that for silicon carbide films between 5 nm 

and 100 nm thick, the thinner films transport more in-plane flux due to 

the long propagation length of the anti-symmetric surface phonon-

polariton mode.  

2. FLUCTUATIONAL ELECTRODYNAMICS 

The fluctuational electrodynamics approach for calculating thermal 

radiation was pioneered by Rytov in 1958 (Rytov et al., 1989). This 

method includes the contributions due to evanescent waves which are 

not included in geometrical optics, and has been used to directly 

compute near-field thermal radiation and emission (Narayanaswamy 

and Chen, 2003; Narayanaswamy and Chen, 2005; Joulain et al., 2005). 

The fundamental idea is that the electric charges in a material in thermal 

equilibrium will experience random, thermal vibrations. These 

oscillating charges form fluctuating currents which are a source for 

electromagnetic radiation. The connection between the fluctuating 

current density and the temperature is given by the fluctuation-

dissipation theorem, which is discussed further below.  

The physical system under consideration is shown in Fig. 1. The 

film is infinite in the x̂ − and ŷ − directions, and has a thickness d in the 

ẑ − direction.   The  material  is  polar  and  has  a  complex,  frequency  
 

 
Fig. 1 A thin film of polar material with thickness d and dielectric 

function ε2(ω) is surrounded on both sides by a vacuum with 

dielectric function 
0ε . The film is assumed infinite and uniform 

in the ŷ − direction. In the x̂ − direction, from negative infinity 

to zero, the film is at temperature T. From zero to infinity, the 

film is assumed to be at 0 K. 
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dependent dielectric function given by ε2(ω) where ω is the angular 

frequency. The material is assumed to be isotropic, non-magnetic and is 

surrounded on either side by vacuum. To compute the in-plane flux, 

half of the film (from x = −∞  to 0) is taken to be the source, and is 

assumed to be at a temperature T. The other half of the film is required 
to solve the electromagnetic problem, but is assumed to be at 0 K. The 

temperature of the left-half of the film is uniform in the ŷ − direction, 

and the film is assumed thin enough that temperature variations in the 

ẑ − direction are negligible. 

3. GREEN’S FUNCTIONS 

The electric and magnetic fields are obtained using the dyadic Green’s 

functions (Tsang et al., 2000) of the vector Helmholtz equation, which 

are the spatial analogues to the impulse response or transfer function. In 

other words, they are used to calculate the electric and magnetic fields 

due to a point current source. For a source located at r' , the Fourier 

transform of the electric and magnetic fields at r are given by, 
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where i is equal to 1− , µ0 is the permeability of free space, 

( )
E

G r,r',ω
�

 and ( )
H

G r,r',ω
�

 are the electric and magnetic dyadic 

Green’s functions which are related by ( ) ( )
H E

G r,r', G r,r',ω ω= ∇ ×
� �

, 

( )J r',ω is the current density, and the integration is performed over V’, 

which is the volume containing the source. 

To calculate the power flow, we are interested in terms of the form 

( ) ( )*
, ,r ri jE Hω ω  where the brackets indicate the statistical ensemble 

average since the thermal radiation is stochastic, i and j denote the 

Cartesian coordinates, and the * indicates the complex conjugate. Using 

Eq. (1),  
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where the superscript “T” indicates the matrix transpose.  

The Green’s function used in these calculations was developed in 

terms of s- and p-polarized waves which allows for the explicit 

inclusion of the Fresnel coefficients of a multilayer geometry (Joulain et 

al., 2005; Sipe, 1987). When the observation and source points are in 

the same layer, the electric Green’s function is given by (Sipe, 1987),  
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for the s- and p-polarized waves respectively. The corresponding 

expression (Sipe, 1987) for the Green’s function is used when the 

source and observation points are in different layers. 

4.  FLUCTUATION-DISSIPATION THEOREM 

The ensemble average of the currents in Eq. (2) is related to the 

temperature of the system by the fluctuation-dissipation theorem 

(Landau et al., 1980) from statistical physics. The theorem relates the 

microscopic fluctuations of a system in thermodynamic equilibrium to 

macroscopic, dissipative quantities. For an isotropic and local medium 

in thermal equilibrium at a temperature T, the theorem states that the 

correlation function of the current density is given by, 
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where ε0 is the permittivity of free space, ε” is the imaginary part of the 

dielectric function, δij is the Kronecker delta function, ( )r-r'δ  is the 

Dirac delta function, ( ) ( ), exp 1BT k Tω ω ωΘ =  −  � � , �  is Planck’s 

constant divided by 2π, and kB is Boltzmann’s constant. The zero-point 

energy is neglected in the expression for the average energy of the 

harmonic oscillator due to reciprocity of the heat transfer conductance. 

For the net x̂ − directed flux, substituting Eq. (4) into Eq. (2) gives,  
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where repeated indices are summed. 

5.   NUMERICAL INTEGRATION 

The integration over the ŷ − direction of the source region in Eq. (5) 

results in a Dirac delta function which collapses the two integrations 

over ky into one.  However, the corresponding integration in 

the x̂ − direction is the Fourier transform of the step function, which 

consists of two terms given by ( ) ( )' 'x x x xk k i k kπδ − + −  where kx is 

for the 
E

G
�

integration and kx’ is for
H

G
�

. The first term leads to the 

expression for the in-plane flux in the case where the entire film is at 

the same temperature. As expected, this term does not contribute to the 

net in-plane flux. Thus the focus is on the second term which introduces 

a singularity into the integrand whenever kx equals kx’. 

The integral is evaluated numerically using QUADPACK 

(Piessens, 1983), which is a library of FORTRAN routines for 

estimating one-dimensional integrals. In particular, a routine using 

adaptive bisection with Wynn’s epsilon algorithm (Wynn, 1956) to 

speed up the integration of integrable singularities was extended to 4-D 

to perform the integration over kx’, kx, ky, and z’. In addition to the 

singularity whenever kx equals kx’, there are also singularities when z 

equals z’, when kx and ky simultaneously equal zero, and when kx’ and ky 

simultaneously equal zero. The integration is split around each of these 

singularities as the QUADPACK routine better handles singularities at 

the endpoints.  

The infinite limits of integration in kx’, kx, and ky lead to a 

divergence of the flux. This divergence can be avoided by replacing  the 

infinite limit of integration with a finite value, which was chosen to be 
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(a) 

 
(b) 

Fig. 2 (a) A plot of the spectral flux at various z heights inside a 5 nm 

thick silicon carbide film. The flux is calculated 0.5 nm from the 

heated edge of the film at 300 K. (b) Plots of the spectral flux at 

various z locations outside the film. The respective insets show 

the spectrally-integrated flux. 

 
1010. The effect of this truncation is to set a bound on the smallest x 

location which can be evaluated. The dependence of the integral on 

wavevector and position is of the form exp( )xk x− so that at a particular 

x location, the contribution due to increasingly larger wavevectors 

becomes negligible. Using a criterion of e-5, the smallest x position that 

can be evaluated is 0.5 nm. Due to the oscillatory nature of the 

integrand, convergence was slow to obtain. With a relative error 

specification of 10-3, each spatial location and frequency took between 

3 and 72 hours to compute on a 3 GHz Unix workstation with 4 GB of 

RAM. 

6. RESULTS AND DISCUSSION 

Calculations were performed for silicon carbide, using a Lorentz model 

for the dielectric function ( 6.7ε∞ = , 141.82 10
LO

ω = × rad/s, 

141.49 10
TO

ω = × rad/s, 
11

8.92 10γ = × rad/s) which was obtained by a fit 

to literature values (Palik, 1985). Given the form of the Green’s 

function, it was straightforward to separate the contributions due  to the  

 
(a) 

 
(b) 

Fig. 3 The average in-plane flux (a) inside and (b) outside the film as a 

function of distance from the heated edge for different film 

thicknesses at 300 K. 

 

transverse electric and the transverse magnetic (TM) modes. As 

expected, it was found that only the TM mode makes a significant 

contribution to the flux, which is consistent with the involvement of 

surface phonon-polaritons. 
The spectral flux inside a 5 nm thick film is plotted in Fig. 2(a) for 

various z heights in the film. As discussed above, these calculations 

were done 0.5 nm from the heated edge of the film, and the inset to the 

figure shows the spectrally-integrated flux as a function of z location in 

the film. Figure 2(b) shows the analogous plots for outside the film. It is 

seen that inside the film, the majority of the in-plane power is carried 

near the edges of the film, and that it then decays to zero at the center. 

While the flux outside the film is nearly four orders of magnitude 

smaller, the penetration into the air is significantly greater, on the order 

of 100 µm. At the frequency of the peak spectral flux outside the film, 

the surface polariton dispersion relation is very close to the light line, 

indicating that the perpendicular component of the wavevector is very 

small. As a result, the corresponding penetration depth is quite large.  

This trend can be understood by considering that a film will have 

two surface polaritons, one on each surface. When the film is thin 

enough,  it is well-known  that  this  degeneracy lifts by splitting into an  
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Fig. 4 (a) The surface phonon-polariton dispersion relations for a thin 

film of silicon carbide. (b) The corresponding propagation 

lengths. 

 
anti-symmetric and a symmetric mode (Raether, 1988; Sarid, 1982; 

Economou, 1969). The field of the symmetric mode is mainly in the 

film, where the damping of the material provides absorption. In 

contrast, most of the anti-symmetric mode propagates outside the film 

and penetrates only slightly into the film. With vacuum surrounding the 

film, the anti-symmetric mode experiences very little damping. Thus, 

the majority of the in-plane flux propagates outside the film as 

expected. 

Commensurately, the propagation lengths inside and outside the 

film are very different. After a spline interpolation, the flux is integrated 

over z and then divided by the film thickness to calculate an average 

flux at each x location. Plotted in Fig. 3(a) is the average flux inside the 

film as a function of distance from the heated edge. It is seen that the 

flux decays exponentially with distance as the energy is absorbed by the 

film. The propagation lengths inside the film are calculated to be on the 

order of several nanometers. Outside the film, the average in-plane flux 

is much higher and has much longer propagation lengths, on the order 

of tens of centimeters as shown in Fig. 3(b). 

The difference in propagation lengths and peak spectral 

frequencies is explained by considering the thin film dispersion 

relations (Raether, 1988). Assuming a real frequency, the resulting in-

plane wavevector is complex (Fukui et al., 1979) where the imaginary 

part is associated with the propagation length, { }1 2Im kΛ =
�

, as is 

done for superlattices (Simkin and Mahan, 2000) and electron energy 

bands (Pendry, 1974). Inside the film, the peak in the spectral flux 

corresponds to the high density of states around 10.4 µm as indicated 

by the dispersion relation in Fig. 4(a).    The corresponding propagation  

lengths at this wavelength are less than a micron as shown in Fig. 

4(b).Outside the film, the maximum in the spectral flux corresponds 

with the peak in the imaginary part of the dielectric function of silicon 

carbide (Palik, 1985) at 12.5 µm. Although the material damping is 

large at this frequency, the anti-symmetric mode is mainly outside the 

film. The dispersion relation shows that at this wavelength the group 

velocity of the mode is quite large, which results in a long propagation 

length. The calculated propagation length in Fig. 4(b) is on the order of 

tens of centimeters, in good agreement with the values extrapolated 

from the decay in average flux. 

 The overall in-plane flux as a function of film thickness from 

the fluctuational electrodynamics calculation compares favorably with 

previous calculations based on kinetic theory (Chen et al., 2005) as 

shown in Fig. 5. Interestingly, in both approaches it is seen that thinner 

films actually transport more flux. This is due to the fact that the anti-

symmetric mode of the thin film dispersion relation has a propagation 

length that increases as the film thickness decreases. As the film

 

 
 

Fig. 5 Comparison of the total in-plane flux from the fluctuational 

electrodynamics calculation with the kinetic theory results. 

 

thickness increases beyond a critical point given by 
2 1zk d ≈ (Burke et 

al., 1986; Raether, 1988; Sarid, 1982; Economou, 1969), there is no 

longer a splitting of the modes and the effect diminishes. 

The phonon and surface phonon-polariton contributions to the 

thermal conductivity follow distinctly different trends. In general, the 

phonon contribution decreases as the film thickness decreases because 

of the increasing effects of surface scattering. In contrast, the thermal 

conductivity contribution from the surface phonon-polaritons increases 

with decreasing film thickness as shown in Fig. 5. As discussed in a 

previous article (Chen et al., 2005), for thin enough films, the surface 

phonon-polariton contribution to the overall thermal conductivity has 

the potential to recover the thermal conductivity lost due to these 

classical size effects. 

7.   CONCLUSIONS 

To conclude, we have presented a fluctuational electrodynamics 

calculation of the in-plane heat flux transported by surface phonon-

polaritons in nanoscale thin films. As the film thickness decreases, the 

overall heat flux increases due to the increased propagation length of 

the anti-symmetric surface phonon-polariton mode. This behavior 

demonstrates the crucial role of surface polaritons in the transport of 

energy along thin films. As shown previously (Chen et al., 2005), 

theeffect is not restricted to crystalline materials, but is also present in 

amorphous materials, as long as there is a region of negative dielectric 

function which supports surface polaritons. Although the majority of 

the in-plane flux is transported in the fields outside the film, it may be 

possible to design appropriate multi-layer geometries or cladding layers 

of photonic crystals. If so, this phenomenon suggests a novel method to 

increase the heat flux along thin films and shows promise in various 

prospective applications in fields such as microelectronics and 

optoelectronics. 
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NOMENCLATURE 

c speed of light in vacuum (m/s) 

d  film thickness (m) 

E electric field vector (V m-1) 

G
�

 dyadic Green function (m-1) 

H magnetic field vector (A m-1) 

�  Planck’s constant over 2π (J s) 

J current density (A m-2)  

k wavevector (m-1) 

kB  Boltzmann’s constant (J/K)  

r  location vector  

T  temperature (K)  

Greek Symbols  

Λ propagation length (m)  

ε dielectric function 

ε'' imaginary part of dielectric function 

µ0  permeability of free space (H m-1) 

γ damping factor (rad/s) 

Θ mean energy of an oscillator (J) 

ω angular frequency (rad/s) 

Superscripts  

p p polarization 

s s polarization 

T matrix transpose 

* complex conjugate 

Subscripts  

LO longitudinal optical phonon 

TO transverse optical phonon 

0 vacuum  

2 medium 
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