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ABSTRACT

The acoustic emission monitoring with artificial neural networks predicts the ultimate strength
of glass/epoxy composite laminates using Acoustic Emission Data. The ultimate loads of all
the specimens were used to characterise the emission of hits during failure modes. The six
layered glass fiber laminates were prepared (in woven mat form) with epoxy as the binding
medium by hand lay-up technique. At room temperature, with a pressure of 30 kg/cm2, the
laminates were cured. The laminates of standard dimensions as per ASTM D3039 for the
tensile test were cut from the lamina. The Acoustic Emission (AE) test was conducted on these
specimens under the load of uni-axial tension in the 10 Ton capacity Universal Testing Machine
(UTM). In the monitoring process, acoustic emission parameters such as hits, counts, energy,
duration, Root Mean Square (RMS) Value and amplitude were recorded. The RMS Values
corresponding to the amplitude ranges from tensile test were used to characterise the failure
load of all the similar glass-epoxy composite specimens.

KEYWORDS: Tensile Test, Artificial Neural Network, Acoustic Emission Test, Composite Materials,
RMS Value.

1. INTRODUCTION

A very fast development of new structural materials
has followed the way of substituting metals for
composite in various industries, such as aviation,
shipbuilding, chemical-petroleum, civil
engineering, etc. Even at the low temperatures,

composite materials have been increasingly
used in many structures such as airplanes, in
which the flight condition undergoes a
temperature as low as -60°C or in a cryogenic
tank which may be exposed to temperature
below -150°C. The advantages of these
materials were very high strength, stiffness, and
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damping together with a low specific weight.
This composite material has higher structural
reliability and enhancing safety compare to
other materials. So, the cost of the
construction, operation, and development of the
composite materials was reduced. Because
of these unique specifications, they are widely
used in high technology applications, such as
aeronautic and aerospace. A composite
material is a material in which, two or more
constituent materials are mixed together to
create a material with properties unlike the
individual elements. These constituent
materials have notably dissimilar chemical or
physical properties. The constituents are, fiber,
and matrix. They are classified by the geometry
of the reinforcement: particulate, flake, and
fibers or by the type of matrix: polymer, metal,
ceramic, and carbon. By the way of incorporate
the reinforcement phase in the composite, the
properties of the composite are improved. In
these composite materials, fibers are the
principal load-carrying constituents while the
surrounding matrix act as a load transfer
medium between them. It helps to keep them
in the desired location and orientation.

Milad Saeedifaret et al. [1] presented a
comprehensive review on the use of AE for
damage characterisation in laminated
composites. They compared the AE peak
frequency of different damage mechanisms
reported in the literature. This research has
given more knowledge about the matrix
cracking, fiber breaking and delamination of the
damage mechanism. As per their review, most
of the researches uses peak frequency and
amplitude for their research works.

Michal Šofer et al.[2] performed tensile and
compact tension tests on specimens with

various stacking sequences to induce specific
failure modes and mechanisms. The AE activity
was monitored using two different wideband AE
sensors and further analysed using a hybrid
AE hit detection process. The datasets
received from both sensors were separately
subjected to clustering analysis using the
spectral clustering technique, which
incorporated an unsupervised k-means
clustering algorithm. The failure mechanism
analysis also included a proposed filtering
process based on the power distribution across
the considered frequency range, with which it
was possible to distinguish between the fiber
pull-out and fiber breakage mechanisms.

Samira Gholizadeh’s[3] study assessed the
progression of damage occurring on glass fiber
reinforced polyester composite specimens
using acoustic emission parameters. Its aims
were to improve understanding of the particular
characteristics of AE signals; and also to
determine the relationship between AE signals
and the failure of the material. Time and
frequency domain trends were analysed at four
different applied loads, representing 45–60 per
cent of the ultimate tensile strength of material.
The relevant AE parameters were analysed both
in the early stages of the test and as the
material neared the fracture zone. The results
showed a high degree of correlation between
the root mean square and number of hits and
the number of cycles to failure, This correlation
as well as AE basic parameters suggests that
AE can be a valuable tool to predict the fatigue
life and detect the onset of damage in such
composite material.

Like this most of the researchers are used to
characterise the properties of composite
materials using AE data such as Amplitude,
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Hits, Count and Energy mostly. But, they didn’t
use the RMS values for the prediction or
characterisation composite materials. So, the
RMS value is selected with their unique feature
of constant value irrespective of their place of
emission for characterisation the tensile failure
of glass/epoxy composites.

2. EXPERIMENTAL

A. Specimen Fabrication

In this fabrication process, the hand layup method was
used to fabricate the GFRP composite lamina of
dimensions 250 × 400 mm. The six layers of bi-directional
glass fiber mat along with LY556 epoxy were employed

for the fabrication of the lamina. The fourteen tensile
specimens of size 250×25×2.5 mm was cut from the
lamina as per ASTM D 3039 standards. [4] GFRP
composite tabs were provided as per the ASTM
standard on both ends. Diamond cutting was employed
to avoid the machining defects and to ensure good
surface finish along the cutting edges. The tensile test
specimens were shown in the following Fig. 1.

B. Tensile Testing Procedure

The tensile specimens were subjected to uniaxial
tension test using DAK universal testing machine.
Fourteen specimens were tested. The crosshead
speed was maintained at 1.5 mm/min throughout the
testing process. The tensile properties of bidirectional
glass/epoxy composite were determined through the

Fig. 2. Specimen with AE Sensors set up

Fig. 1. Sample Fabricated Specimens
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testing process. The testing procedure of the ASTM
D3039 Standard Test Method for Tensile Properties of

Epoxy Matrix Composite Materials has adhered.

Fig. 2 shows the prepared tensile test specimens with

strain gauges and wiring to obtain the strain values
during the testing process. While loading, AE activities

were monitored with Physical Acoustic Corporation

(PAC) AE system.[5] A pair of Nano sensors and

preamplifiers with 45 dB gain was used. AE transducers
were mounted in position using adhesive tapes 37.5
mm apart from GFRP tabs. To acquire emissions from
the complete volume, the sensors were mounted on
alternate sides of the specimen as shown in Fig. 3. AE
signals transmission between specimen and sensor
were ensured through appropriate couplant (silicone
vacuum grease).[6] A threshold setting of 45 dB was
adopted for the test after estimating background noise.

Fig. 3. Location of Sensors on the Specimen

3. RESULTS AND DISCUSSION

A. Failure load prediction

The failure characterisation will be changed
according to AE parameters such as amplitude,
count, RMS, energy, and duration. V.
Arumugam et al have considered only
amplitude-frequency for their prediction work.[7]

The sensors were fixed at different places on
the specimens. For every hit, the sensing
amplitude by the sensors at different places
were different because of the distance between
the sensor and source. So, the definition of
failure mode was not accurate for this prediction
work.[8] It was due to attenuation, the predicted
value using amplitude-frequency had some

error. But the RMS value was the same at each
sensor for every source. So, the predicted value
was accurate. These values are an effective
parameter, which is not attempted so far. It has
been successfully handled in this research
work, and the worst-case prediction error of
5.62 per cent was obtained. The relationship
between failure load and RMS values was
shown in the fig. 4.

Out of fourteen numbers of tensile specimens,
ten specimens were selected for group 1. Their
AE data collected up to 70 per cent of the failure
load was used in the training phase to train the
neural network. The remaining four specimens
were selected for group 2. These specimens
were used for testing the network.[9]  AE data
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Fig. 4. Graph between RMS Value and Actual Failure Load

TABLE 1: Recorded RMS value for 45 dB and Actual failure load

Specimen RMS Actual Failure Load in KN

SP-1 0.0092 8.63

SP-2 0.0086 11.51

SP-3 0.0272 10.74

SP-4 0.0178 9.64

SP-5 0.1132 10.85

SP-6 0.2450 12.51

SP-7 0.7930 12.91

SP-8 0.3062 12.54

SP-9 0.0952 10.53

SP-10 0.7792 12.40

SP-11 0.1304 10.47

SP-12 0.1678 8.90

SP-13 0.0506 11.55

SP-14 0.0426 9.27
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were collected and its corresponding failure load
was utilised for prediction. RMS values in each
dB interval (45dB to 100dB) were calculated.
Those values were made as a numerical array
(matrix), which was convenient as an input for
the network. The failure load of each specimen
was also arranged in the same way, and it was
given as the targeted output for the network.[10]

The total RMS values and corresponding failure
load of each specimen for 45dB are
summarised in Table 1. The neural network
model was developed in MATLAB-10
workspace, and it was trained with ten
specimen data.[11] Better training performance
was obtained at 56-40-1 network architecture.

TABLE 2: Actual Failure Load Vs Predicted Failure Load for the first set of specimens

Specimen Actual Failure Load Predicted Failure % of Error
 in KN in KN

SP - 9 10.53 10.47 0.56

SP-11 10.47 10.57 0.96

SP-12 8.90 11.16 25.36

SP-14 9.27 8.92 3.77

Here 56 neurons in the input layer (RMS value
of each amplitude as one neuron) and only one
neuron (failure load) in the output layer.[12&13] In
between a single middle layer was adjusted
and optimized with 40 neurons. The learning
coefficient and momentum were 0.01 and 0.9
respectively. It is due to the number of input
neurons that was more, Levanberg - Marguart
algorithm was employed as a learning rule. [14]

The hyperbolic tangent transfer function was
used in the middle layer. The optimised neural
network was tested with the remaining four
specimens’ data, the results were summarised
in Table 2.

From Table 2, the failure load prediction error
of specimen number 12 was found outside the
acceptable error margin of 5 percent. Above
the said table, the other three specimen’s failure
loads were within the range at which the
network was trained.[15] It shows the incapability

of the network to predict the failure load, which
was outside the training range. Subsequently,
the network was trained with some more training
sets. It was noticed that changing the data set
with a new training phase gave much reduction
in its error margin. The Table 3 shows the result

TABLE 3: Actual Failure load Vs Predicated load for the best set of Specimens

Specimen Actual Failure Load Predicted Failure % of Error
 in KN in KN

SP - 4 9.64 10.04 4.22

SP - 9 10.53 10.25 2.66

SP-11 10.47 9.95 4.97

SP-14 9.27 8.75 5.62
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of the fine-tuning network. Thus, the network
has proved its potential within the range of target
failure loads given in the training phase.

The revised network consists of 56 neurons in
the input layer and one targeted failure load in
the output layer shown in Fig. 8. The best

training performance was obtained at 56-40-1
network architecture. The error convergence
threshold of 7×10-8 was attained at 4 epoch
size, (Fig. 5). The above said learning rule,
transfer function, the optimal learning
coefficient, and momentum were used for this

Fig. 5. Convergent Result

Fig. 6. Actual Failure Load Vs Predicted Failure Load Vs Specimen



Journal of Polymer Materials, July-December 2023

222 Prabhu et al.

network.[16 &17] The prediction accuracy of the
network could be understood by the
comparison plot of actual and desire outputs
(Fig. 5 & 6). The worst-case prediction error of
5.62 per cent was obtained for specimen
number 14. All other values were very close to
the actual outputs.

B. Failure Mode Analysis

Earlier researchers have considered only
amplitude-frequency for their failure
characteristics work.[18] Hit values are an

TABLE 4: Type of Failure Modes

Zone Amplitude (dB) Duration (μs) Proposed Main Failure (Damage) Mode For Signals

I 45-60 <300 Matrix Cracking (Week)

II 45-60 >300 Matrix Cracking (Week)

III 61-80 <300 Week Fiber Failure, Matrix Cracking (Strong)

IV 61-80 >300 Week Delamination, Matrix Cracking (Strong), Some Fiber Failure

V 81-100 <300 Matrix Cracking (Strong), Strong Fiber Failure

VI 81-100 >300 Strong Delamination, Matrix Cracking (Strong), Some Fiber Failure

effective parameter, it has been successfully
handled in this research work for the failure
mode definition. In this work, hits emitted are
separately collected for the specified amplitude
intervals i.e. 45-60, 61-80, and 81-100. The
failure mode was characterised according to
the following definitions as shown in Table 4.
The number of hits emitted are high when strong
de-lamination and matrix cracking are available.

If the amplitude 45-60 in (Decibels) dB and the
duration in microseconds (µs) were less than
300, then the failure mode was Matrix Cracking

in week condition. If the amplitude 45-60 in dB
and the duration in microseconds were greater
than 300, then the failure mode was Matrix
Cracking in week condition.[19&20] If the amplitude
61-80 in dB and the duration in microseconds
were less than 300, then fiber failure was very
week and strong matrix creaking failure has
appeared.

If the amplitude 61-80 in dB and the duration in
microseconds were greater than 300, then fiber
failure was very week and strong matrix
creaking was be very strong, very week de-
lamination has appeared. If the amplitude 81-
100 in dB and the duration in microseconds

were less than 300, then fiber failure was very
strong, and strong matrix creaking has
appeared. If the amplitude 81-100 in dB and
the duration in microseconds were greater than
300, strong matrix creaking and very strong
de-lamination has appeared. Some fiber failures
may occur.[21]

From the Table, Duration less than 300
microseconds, there is no linear relationship
between the hits emitted during the above-said
condition and the corresponding failure loads.
Also, duration more than 300 microseconds,
the hits emitted during amplitude 40-60, 61-80
were not linear with the failure loads. Also the
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TABLE 5: Failure Load Vs Total Hits

Sl. No.   Specimen

Duration < 300 (μs) Duration > 300 (μs)

Total Hits

Failure
Load
(kN)

Hits Hits

45-60 61-80 81-100 61-80 81-100

1 SP-1 1427 115 0 89 20 1651 8.63

2 SP-2 2442 318 1 48 47 2856 11.51

3 SP-3 789 131 1 66 62 1049 10.47

4 SP-4 700 111 1 39 18 869 9.64

5 SP-5 800 69 1 37 32 939 10.85

6 SP-6 747 78 0 117 107 1049 12.51

7 SP-7 959 46 1 83 101 1190 12.91

8 SP-8 709 59 1 101 169 1039 12.54

9 SP-9 1288 52 2 18 34 1394 10.53

10 SP-10 1320 49 0 51 72 1492 12.40

11 SP-11 1509 84 4 37 58 1692 10.47

12 SP-12 1215 71 0 27 35 1348 8.90

13 SP-13 724 54 0 99 78 955 11.55

14 SP-14 790 73 0 29 22 914 9.27

               Amplitude (dB)                   Amplitude (dB)

Fig. 7. Total Hits Vs Failure Load
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TABLE 6: Hits (Specified Amplitude and Duration) Vs Failure Load

Sl. No. Specimen Duration  > 300 (μs) Failure Load (kN)

Amplitude 81-100 (dB)

Hits

1 SP-1 20 8.63

2 SP-2 47 11.51

3 SP-3 62 10.47

4 SP-4 18 9.64

5 SP-5 32 10.85

6 SP-6 107 12.51

7 SP-7 101 12.91

8 SP-8 169 12.54

9 SP-9 34 10.53

10 SP-10 72 12.40

11 SP-11 58 10.47

12 SP-12 35 8.90

13 SP-13 78 11.55

14 SP-14 22 9.27

Fig. 8. Hits Vs Failure Load on Amplitude 80 – 100 and Duration > 300 µs
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total hits for each specimen were not linear
with the failure loads of each specimen as
shown in the table 5 and the fig. 10. But duration
more than 300 microseconds, the total hits for
every specimen emitted during amplitude 81-
100 were linear with the failure loads of each
specimen[22-23]. It shows in table 6, and also
observed from the fig. 7 & 8.

IV.  CONCLUSION

Acoustic Emission parameters like amplitude,
hits, counts, and RMS values are most
significant to predict the ultimate failure load.
The back propagation neural network has
proved its capability for predicting the failure
load of the composite specimen with the AE
data collected up to 70 per cent of its ultimate
load. The ultimate failure load prediction within
a 5.62 per cent error margin was attained by
giving RMS value as input vectors for the three-
layer network.

It may be possible to proof test the composites
more sophisticated at lower loads (may be 50
per cent to 60 per cent of ultimate load). So,
the composite material’s structural integrity
degradation could be minimised while proof
testing. It is due to the highest number of hits
emitted during a period of amplitude 81-100
and duration 300 µs, and also the hits emission
was linear with the failure loads of the specimen,
is assured here, the specimen’s structural
integrity is started to failure here only.
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