
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.047336

ARTICLE

Multi-Branch High-Dimensional Guided Transformer-Based 3D Human
Posture Estimation

Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3 and Usama Masood1

1School of Mechanical Engineering, Anhui University of Technology, Huainan, 232001, China
2School of Artificial Intelligence, Anhui University of Technology, Huainan, 232001, China
3Key Laboratory of Conveyance Equipment (East China Jiaotong University), Ministry of Education, Nanchang, 330013, China

*Corresponding Author: Xianhua Li. Email: xhli01@163.com

Received: 02 November 2023 Accepted: 16 January 2024 Published: 26 March 2024

ABSTRACT

The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the
three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in
the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining
the relationship between the movements of different bones in the human body, four virtual skeletons are proposed
to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and
projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and
overall motion features are extracted to mitigate the drift error in the estimation results. Furthermore, the estimated
relative depth is projected into 3D space, and the error is calculated against real 3D data, forming a loss function
along with the relative depth error. This article adopts the average joint pixel error as the primary performance
metric. Compared to the benchmark approach, the estimation findings indicate an increase in average precision of
1.8 mm within the Human3.6M sample.
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1 Introduction

Using one single photograph to estimate the body’s three-dimensional (3D) position is crucial in
interactions between humans and computers, augmented reality, and behavioral research. However,
the uncertainty about two-dimensional (2D)-3D predictions, including self-occlusion and the absence
of depth data, makes per-frame-based 3D pose estimation difficult.

Currently, there are two main categories of 3D estimation methods: direct approaches and 2-step
methods. The direct method involves utilizing a singular frame picture as a source of information
and directly estimating 3D position of the human body solely based on the image [1–4]. Although the
direct method can obtain rich feature information from images, it is difficult for a single model to learn
these features due to the lack of intermediate supervision and the impact of complex scenes and self-
occlusion in images. The proposed approach involves a two-step methodology for the problem of 3D
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person estimation of poses. This methodology entails splitting the assignment into two distinct stages:
the initial estimation of the 2D human pose within the provided image, and the subsequent estimation
of the 2D human pose based on the obtained 2D posture. In their study, Martinez et al. [5] employed
an entirely connected layer integrated by multi-layer remaining links to perform a regression of 3D
posture based on 2D coordinates. Their findings demonstrate that the primary source of inaccuracy
in 3D posture estimates stems from the accuracy of 2D estimations of pose. Furthermore, due to
the advancement of 2D person key point estimation techniques, the two-step approach has gained
significant popularity in contemporary 3D position estimation endeavors.

The main problem that the two-step method needs to solve is how to restore the depth information
of each key point from the 2D pose to address this issue, Chen et al. [6] searched for the optimal 3D
pose based on the nearest neighbor matching. Tekin et al. [7] used a 2D key point heat map as an
intermediate representation to obtain richer spatial information. Moreno et al. [8] employed distance
matrices that represented both 2D and 3D human postures. Additionally, the researchers converted the
mapping from 2D to 3D to address the matrix regression issue. The enhancement of 3D pose estimate
precision has been achieved through the utilization of feature extraction and subsequent fitting of the
initial 2D pose. Nevertheless, the absence of any pre-existing knowledge to facilitate the convergence of
networks ultimately results in an increased model complexity and challenges in achieving convergence.

The use of the relative level of important areas as a forecast target directly affects the accuracy
of 3D posture estimation. The lack of homogeneity among devices used for collecting 3D person
poses data results in notable variations in the 3D poses observed across different datasets, even when
considering the global coordinate scheme. The utilization of the distance between key elements as a
measurement objective is a highly effective approach to mitigating the influence of data disparities.
However, the introduction of relative depth can lead to drift errors. The determination of the
coordinates of smaller-scale key points is contingent upon the coordinates for upper-level crucial
locations, and any inaccuracies with the higher-level connections will likewise impact the smaller-
scale joints. The error of each level will gradually accumulate downwards, and the farther away from
the root joint, the greater the accumulated drift error. To tackle the aforementioned concerns, this
study presents a novel approach utilizing a transformer-based multi-branch structure to enhance the
precision of 3D posture prediction. The network outlined in this paper has three distinct properties:

(1) Multi-parameter fusion of bones and projection towards higher dimensions combining the
characteristics of self-attention mechanism networks, bone parameters are fused by quantitatively
analyzing the motion of human joints in the 2D space, four virtual skeletons are constructed to reduce
drift errors in limb pose estimation.

(2) Multi-scale feature fusion. Proposition of a multi-branch network to extract features of inter-
skeletal and global motion by fusing motion features at different scales, the drift error caused by using
relative depth as the prediction result is reduced.

(3) High dimensional projection guides model convergence. The acceleration of the algorithm’s
convergence rate as well as improvements in network precision for estimation are achieved by mapping
the estimated results into multidimensional and actual labeling for mistake calculation.

By projecting the estimation results onto high-dimensional and real labels for error calculation, the
convergence speed of the model is accelerated while improving the estimation accuracy of the network.
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2 Related Work
2.1 Method Using Monocular Image

Along with the growth of deep neural networks that can learn better, like graph neural network
(GNN), Transformer, which is a long short term (an LSTM) network, is being used for 3D pose
estimation jobs. Combining what we already know about human anatomy with limits makes the model
work better. Nie et al. [9] projected the dimensions of a person’s joints using 2D photographs of
body parts and joint orientations. Zhou et al. [10] used all three connection temperature maps to
show the corresponding depth data for the endpoints within each skeleton body part. Li et al. [11]
suggested an innovative regression model that uses differential logarithm likelihood estimates to
show how the network’s outcome is spread out. Wang et al. [12] combined the complex projection
via supervised training. They projected the estimated 3D pose into 2D space and set a fixed bone
length as the predicted goal. Wang et al. [13] came up with the idea for “virtual bones,” which
adds new cyclic limits to the process of figuring out a person’s 3D pose. In the GNN algorithm
learning, Zeng et al. [14] suggested a hop-aware layering channel compressing fusion layer that could
successfully pull-out useful information from nearby nodes while blocking out noise. By adding a local
linked network (LCN), Ci et al. [15] suggested a better graphic convolutional network that would
clear up the confusion of 2D–3D. When people move, they have a link among the ligaments and
tendons of their bodies. The self-attention system can learn how human bones rely on each other.
Lutz et al. [16] effectively improved the performance of the self-attention mechanism network by
introducing intermediate monitoring and residual connections between stacked encoders.

Due to issues such as self-occlusion, ill-posedness, and missing depth information in 2D-3D
projection, the network is not only difficult to converge without prior knowledge but also has low
performance. So it has become a trend to improve the learning performance of networks by introducing
prior knowledge.

2.2 Method Based on Time Series

The duration series-based technique takes a set of frames consecutively as input and renders 3D
human pose estimates more accurate and stable by adding time constancy. Liu et al. [17] utilized
a multiple-scale framework for hollow inversion to improve the uniformity of time in temporally
receptive fields. This allowed for over-time-dependent learning for tasks like estimating poses. In
their study, Zheng et al. [18] reconstructed all the individual bone joints in every frame as well as
the relationships among frames in terms of time. They then produced a precise 3D body pose for the
center frame. The researchers, Li et al. [19] built multi-hypothesis-dependent connections and set up
connections among hypothesis traits. They then combined several hypothesized traits and made the
final 3D pose. Li et al. [20] aggregated local and global features into unidirectional representations by
fusing features extracted from ordinary and step transformers. Wang et al. [21] improved the robustness
of 3D sequence generation and key point motion recovery by integrating short-term and long-term
motion information and introducing motion loss. Zhang et al. [22] acquired the knowledge regarding
the spatiotemporal relationships with body joints across all global frames allowed for the estimation
of human posture in three dimensions.

2.3 Method Based on Multiple Views

The utilization of multiple views has proven to be a successful approach to addressing the issue
of lacking depth data during the process of projecting 3D objects onto a 2D plane. Brian et al. [23]
learned 3D rotation and length between bones based on multi-view fusion layers, and reconstructed the
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skeleton through time-dependent joint rotation. Ma et al. [24] inspired by multimodal Transformers,
proposed a 3D position encoder to guide the encoding of the corresponding relationships between
pixels in different views. Shua et al. [25] proposed a unified framework consisting of feature extractors,
multi-view fusion transformers, and time transformers, which can adaptively handle different views
and video lengths without camera calibration.

3 Model of This Article

The paper presents a suggested framework for 3D human posture estimation that relies upon
the Transformer architecture and incorporates several branches to handle high-dimensional data. The
construction of this framework is depicted in Fig. 1. It utilizes the estimation outcomes of pre-existing
2D detectors as its input. After preprocessing the 2D pose, the bone parameters are fused and projected
to high-dimensional, and the fused parameters are input into two-branch networks for inter-bone and
overall motion feature extraction. Branch 1 uses residual connections to avoid gradients in the deep
network. Then, the extracted features are fused and connected to a fully connected network for bone
relative depth estimation. Finally, the estimated relative depth is combined with the input real 2D bone
length to guide the model convergence in a high-dimensional manner. The number of attention heads
is configured as 8 to mitigate the computational complexity of attention calculations. The utilization
of single-dimensional (1D) convolution is employed as a replacement for fully connected layers to
achieve embeddings in higher dimensions. where Wq signifies the content at the current position that
necessitates attention, Wk represents the content across all positions, utilized for comparison with
the query to calculate attention weights. Wv is employed to obtain a weighted average of content at
different positions based on attention weights. The formula for attention computation is as follows:

Attention
(
Wq, Wk, Wv

) =
∑T

i=0

soft max(Wq, Wk)

dT
Wv (1)

Figure 1: Overall network design
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3.1 Determination and Preprocessing of Bones

Directly using 2D coordinates as input to the network will increase the convergence difficulty of
the model. The human posture is described through directed encoding of bones, as shown in Fig. 2.
This article takes the chest as the root coordinate, as indicated by the red dot in Fig. 2. By constructing
joint vectors to reduce convergence difficulty, the preprocessing formulas are shown in Eqs. (2) and
(3), the initial and final positions within the i-th skeleton are denoted as Jhi as well as Jei, respectively.
The expression representing the i-th skeleton is [V i, Mi]:

Mi = √
Jei − jhi (2)

Vi = (Jei − Jhi)/Mi (3)

Figure 2: Directed encoding of human joints

To explore the response mechanism of human motion in 2D space, this article visualizes the
motion of human bones in 2D space, as shown in Fig. 3. The color depth signifies the range of joint
motion, with darker shades indicating a broader range of joint movement, while lighter shades denote
a more limited range of joint motion. In terms of human anatomy, it is possible to say that a 2D unit
vector represents each bone in the human body. Through the analysis of 300,000 samples, the range
of motion of the human limbs is the largest. Moreover, due to the use of the relative depth of bones
as the estimation result, the errors of the superior bones will accumulate in the subordinate bones,
causing drift errors. The relative distance between the limbs and the root joint point is the farthest, and
the cumulative drift error is also the largest, making it the most difficult to estimate human motion.
Therefore, this article introduces four virtual bones to increase the cyclic constraints on human limbs
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and reduce drift errors. In the following illustration, the arms’ virtual bones are linked together using
the red dotted line.

Figure 3: The movement of human skeletons in 2D space

3.2 Joint Parameter Fusion

After preprocessing bone parameters, each bone in the human body is represented by three
parameters, with a total of 20 joints and 60 parameters. To resolve the issue of training bone
dependency relationships from 60 parameters in networks based on self-attention mechanism, a joint
parameter fusion algorithm was designed. The calculation formula is shown in (4), where Pj is the
bone parameter matrix preprocessed by the method in 3.1, and the variable j represents the quantity
of bones, whereas W i is the fusion coefficient matrix for bone parameters and i is the number of weight
matrices; Mj is the fused parameter matrix.

Pj1 × Wi1 + Pj2 × Wi2 + Wi3 × Pj3 = Mj (4)

As shown in Fig. 4, the weight matrix slides in the column direction of the bone parameter matrix
to obtain the fused bone parameter matrix in order to extract as many 2D pose features as possible,
multiple W matrices will be created that can continuously update parameters with network training,
achieving the encoding of bone parameters into high-dimensional space.

3.3 Multi Branch Network

Branch 1 network adopts the encoding layer of Transformer [26], and through joint parameter
fusion, a set of bones can be projected into higher dimensions to replace traditional Transformer’s
word embedding operation, extending the input 2D pose parameters to the hidden dimensions of the
network. In addition, the bone fusion matrix W only focuses on multiple parameters of a certain bone
rather than multiple parameters of multiple bones, which avoids confusion of different bone features
and achieves the extraction of features between different bones. The Branch 2 network is comprised of
numerous 1D convolutional layers, each employing a convolutional kernel that has a desired quantity
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(3 kernels per layer), as shown in Fig. 1. Similarly, the fused bone parameters are used as inputs to
the Branch 2 network, and the overall features of human movements are extracted by expanding the
receptive field of the network through multi-layer convolution. Using residual connections to avoid
gradient vanishing in deep networks, as shown in the schematic diagram of Branch 2 network in
Fig. 1, the black curve represents the residual module. The dimensions of the upper and lower layers
connected by black dashed lines are different. Here, the size of the residual block is filled with 0 to the
same size as the end layer.

Figure 4: Bone parameter fusion

As shown in Fig. 5, C1 is the estimation result trained using the Branch 1 network; C2 is the
estimation result trained using the Branch 2 network; All are the estimated results of using two
branches to train simultaneously. The red skeleton represents the real data, and the blue skeleton
represents the estimated results of each network. Obviously, the drift error of C1 is greater than that
of C2. Experiments have shown that the features outputted by the network based on self-attention
mechanism are concentrated between adjacent bones, and the description of the overall human motion
features is insufficient. Hence, the integration of features at various scales has been observed to
significantly enhance the efficacy of 3D estimation of pose networks, while concurrently mitigating
systemic drift problems.

3.4 Loss Function

This paper integrates the outcomes associated with network evaluation with the projections for
the input information into a 3D space to facilitate the convergence of the network and improve the
resilience of the 2D to 3D projection process. The final loss function will consist of two parts: the
first part is the relative depth estimated by the network; the second part is a high-dimensional space
projection. Let Zi be the relative depth of each bone estimated by the network, Li be the bone parameter
matrix inputted into the network after preprocessing, Zi

∗ be the actual relative depth of bones, Gi
∗ be

the actual length of bones in 3D space, n be the number of bones, and W be the weight, which is an
empirical value of 0.3 The equation used to compute the entire coefficient of loss is:
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Loss = W ×
[

1
n

∑n

i
(Zi − Zi

∗
)

2

]
+ (1 − W) ×

[
1
n

∑n

i

(√
Li

2 + Zi
2 − Gi

∗
)2

]
(5)

Figure 5: Estimation results of Branch 1, Branch 2, and overall network

4 Experiments

This work utilizes the Human3.6M database [27], which is a commonly employed database for
both training and assessing 3D estimation of human pose tasks. The system utilizes a motion capture
device and a total of four cameras for gathering 3D posture data and matching images accordingly.
The utilization of sensor calibration parameters facilitates the projection of 3D joint locations onto the
2D picture plane for every camera. The dataset comprises a collection of 3.6 million photos featuring
seven individuals who are recognized as professional performers. These photographs capture a diverse
range of 15 distinct actions. This paper follows the standard scheme, uses 1, 5, 6, 7, and 8 for training,
and uses 9 and 11 for evaluation. The dataset processing refers to Dario [28] and other methods in
the training process, only 1, 5, 6, 7, and 8 were used for training, without any additional datasets and
data enhancement methods. The hardware platform for training is i7-12700 CPU, NVIDIA rtx3090ti
GPU, and 32 G memory. The built model framework utilizes TensorFlow 2, employing the Adam
optimizer with a learning rate set to 1 × 10−5. The number of items in each batch equals 512. The
number of multiple heads in the attention mechanism network is 8, the embedded dimension is 256,
and the hidden dimension is 1024.

4.1 Comparison with Advanced Methods

This work utilizes the mean per joint position error (mpjpe) for the evaluation metric, which
is computed by measuring the discrepancy in millimeters among the actual value as well as the
projected outcome after aligning with the base joint. Initially, the anticipated 2D position is utilized as
a parameter to evaluate the network’s efficacy. The efficiency of the algorithm on the Human3.6M
sample was evaluated using a cascaded pyramid network (CPN) [29], as indicated in Table 1. In
comparison to the benchmark technique, joint precision, there is an observed enhancement in overall
accuracy of around 1.4 mm. Additionally, the network’s efficacy is evaluated using the actual 2D
position as its input, as demonstrated in Table 2. The best results in Tables 1 and 2 are shown in bold.
The model in this paper has achieved the highest accuracy in most movements.
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Table 1: mpjpe with 2D key points estimated by CPN as input

Method Direct Discuss Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Avg

Tekin et al. [7] 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107 69.3 70.3 74.3 51.8 63.2 69.7
Martinez
et al. [5]

51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Yang et al. [30] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Ci et al. [15] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Liu et al. [31] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu et al. [32] 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Sebastian [16]T 45.6 49.7 46.0 49.3 52.2 58.8 47.5 46.1 58.2 66.1 50.7 47.5 52.6 39.2 41.6 50.1
Ours 41.3 46.5 41.7 48.7 51.0 52.6 39.3 47.4 61.3 65.6 50.6 44.0 41.4 44.8 40.3 48.7

Note: Bold indicates the optimal value, and T indicates the method using transformer.

Table 2: mpjpe with real 2D label as input

Method Direct Discuss Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Avg
Martinez
et al. [5]

45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Zhao
et al. [33]

37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Liu et al. [27] 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Ci et al. [15] 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3
Pavllo
et al. [28]

35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8

Sebastian
[16]T

31.0 36.6 30.2 33.4 33.5 39.0 37.1 31.3 37.1 40.1 33.8 33.5 35.0 28.7 29.1 34.0

Liu et al. [17]T 33.0 35.7 31.7 32.4 32.1 36.5 37.2 32.6 40.7 41.4 32.6 33.1 30.9 24.9 25.9 33.4
Niloofar [34]T 31.2 46.9 32.5 31.7 41.4 44.9 33.9 30.9 49.2 55.7 35.9 36.1 37.5 29.07 33.1 36.2
Ours 28.4 33.1 25.3 30.5 31.6 32.4 28.4 33.0 38.1 32.1 33.4 33.2 26.7 31.7 28.4 31.6

Note: Bold indicates the optimal value, and T indicates the method using transformer.

4.2 Ablation Test

In this section, to demonstrate the precision improvement by a multi-branch network, experiments
were conducted using C1, C2, and the entire network. C1 is a branch network using only the self-
attention mechanism; C2 uses only deep convolution. All refers to the use of two branch networks.
To eliminate errors produced by the 2D attitude detector, real 2D attitude is used as the input. All the
experiments differ only in the network model, with consistent experimental platforms, node parameter
processing, fusion, and loss parameters. The concluding investigational outcomes are presented in
Table 3, with the greatest outcomes highlighted in bold. This indicates that the performance of the
entire network is better than that of any single-branch network.

Because the relative depth of each bone is utilized as the forecasting consequence, the key
positions, points at the end of the bone, are determined based on the starting point of the bone.
Consequently, the error of the upper bone accumulates step by step to the next bone. To assess the
impact of the system in this research on drift error suppression, the mpjpe of the model at 17 key
points is obtained through tests of C1, C2, and All networks. The 17 key points are translated based
on the chest key points. The final experimental results are presented in Table 4, with the worst result
underlined. It can be observed from Table 4 that the estimation error of C1 in limb joints is significant,
and the error increases as the distance from the root joint grows. The limb joints of the C2 branch also
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exhibit error accumulation, but correctness is notably enhanced when associated with C1. Ultimately,
when the dual-branch network is trained, the drift error of the estimation result is reduced through
the fusion of C1 features and C2 features. The estimation accuracy of the All network surpasses that
of a single-branch network in all joints.

Table 3: mpjpe of single branch network and overall network

Netwok Direct Discuss Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Avg
C1 35.8 38.3 35.8 38.3 35.0 39.3 37.8 40.7 45.1 36.3 39.6 38.2 33.2 36.3 33.5 37.6
C2 31.0 34.6 28.3 32.2 31.7 34.3 29.2 36.8 43.0 31.7 37.1 34.8 27.1 32.5 30.2 33.1
All 29.1 33.7 26.0 29.6 32.6 33.9 28.2 34.7 40.9 31.3 34.3 33.2 26.1 31.1 29.0 31.6

Note: Bold indicates the optimal value.

Table 4 : mpjpe of single branch network and overall network at each key point

Netwok Hip Rhip Rknee Rfoot Lhip Lknee Lfoot Spine Thorax Neck Head Lshoulder Lelbow Lwrist Rshoulder Relbow Rwrist

C1 33.1 36.5 46.9 66. 0 36.8 41.0 68.7 26.8 0.0 17.5 23.7 17.9 40.8 57.7 20.5 44.8 59.8
C2 23.1 24.6 37.2 62.6 29.5 42.9 63.6 19.0 0.0 11.1 19.4 22.8 39.2 49.4 25.3 42.6 51.1
All 24.0 27.6 39.1 54.3 30.0 42.2 58.2 15.7 0.0 11.3 18.1 19.2 37.1 48.0 23.3 43.6 50.1

Note: Underscores indicate the worst value.

4.3 Visual Display

Finally, CPN and OpenPose [35] are used as 2D attitude estimators, which are visualized on
Human3.6M and field datasets. As shown in Fig. 6, the visualization presents the prediction results of
the Human3.6M dataset. CPN is utilized as the 2D detector for predicting the Human3.6M dataset.
Fig. 7 displays the outcomes of single-person estimation using OpenPose as the frontend. Fig. 8
showcases the multi-person estimation results using OpenPose as the 2D detector.

Figure 6: Visualization of Human3.6M dataset prediction results
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Figure 7: Single person estimation visualization

Figure 8: Visualization of multi person estimation

5 Conclusion

This study presents an innovative design for the 3D pose estimation, aiming to enhance the
accuracy of estimation by leveraging the extraction of global as well as local motion information
from the structure of a person. To address the issue of learning skeletal dependencies within the
network, a joint parameter fusion algorithm is introduced, which leverages a multi-branch network
for the extraction of both inter-skeletal and overall motion features. Specifically, branch C1 utilizes the
encoding layers of a Transformer, while branch C2 employs convolutional layers; their combination
through residual connections complements each other, thereby enhancing network performance.
Ultimately, a high-dimensional guidance model is employed for convergence, incorporating relative
depth and actual 2D skeletal lengths to construct a loss function aimed at improving the robustness of
the 2D to 3D projection. The proposed approach is evaluated on the publicly available Human3.6M
dataset, with an average joint pixel error of 48.7 when using CPN as the front-end network. The
error using actual 2D coordinates as input is 31.6. Compared to the accuracies of the single-branch
networks C1 and C2, it has improved by 6 and 1.4 mm, respectively. In comparison to state-of-the-art
methods, the approach using 2D pose estimation as the front end has achieved a 1.4 mm improvement
in accuracy. The method using actual 2D poses as input has demonstrated a 2.2 mm improvement in
accuracy.
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