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Abstract: Recently, renewable energy (RE) has become popular due to its
benefits, such as being inexpensive, low-carbon, ecologically friendly, steady,
and reliable. The RE sources are gradually combined with non-renewable
energy (NRE) sources into electric grids to satisfy energy demands. Since
energy utilization is highly related to national energy policy, energy prediction
using artificial intelligence (AI) and deep learning (DL) based models can be
employed for energy prediction on RE and NRE power resources. Predicting
energy consumption of RE and NRE sources using effective models becomes
necessary. With this motivation, this study presents a new multimodal fusion-
based predictive tool for energy consumption prediction (MDLFM-ECP)
of RE and NRE power sources. Actual data may influence the prediction
performance of the results in prediction approaches. The proposed MDLFM-
ECP technique involves pre-processing, fusion-based prediction, and hyper-
parameter optimization. In addition, the MDLFM-ECP technique involves
the fusion of four deep learning (DL) models, namely long short-term memory
(LSTM), bidirectional LSTM (Bi-LSTM), deep belief network (DBN), and
gated recurrent unit (GRU). Moreover, the chaotic cat swarm optimization
(CCSO) algorithm is applied to tune the hyperparameters of the DL models.
The design of the CCSO algorithm for optimal hyperparameter tuning of the
DL models, showing the novelty of the work. A series of simulations took
place to validate the superior performance of the proposed method, and the
simulation outcome emphasized the improved results of the MDLFM-ECP
technique over the recent approaches with minimum overall mean absolute
percentage error of 3.58%.
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1 Introduction

Sustainable growth can be determined as retaining humanity’s sources for day-to-day require-
ments at a level that won’t deny future generation requirements [1]. Sustainable growth contains 3
dimensions that are environmental, economic, and social. Consequently, there has been a need to cover
the increasing energy for achieving sustainable developments; in other words, to minimize the pollution
of the resource utilized in this process, to enrich the quality of life, and to realize the production
essential for humanity [2]. Currently, most other countries cover their energy requirements from fossil
fuels like natural gas and coal, and the energy utilization of the nation surges and carbon emission
is also increasing. Once fossil fuel is employed, they leave a specific number of residues from gases
and solid substances. This residue, i.e., created by fossil fuels, could not be reutilized in any way;
thus, it creates environmental pollution [3–5]. In that regard, sustaining the growing energy needs
from renewable energy (RE) sources like biofuels, geothermal, solar, wind and biomass would assist
in maintaining the pollution of the source at the lower level for sustainable growth [4].

RE is becoming a traditional preferred energy solution [6]. Wind and Solar energy could
increasingly follow conventional energy sources. Simultaneously, considering that RE is low carbon,
affordable, stable, trustworthy, and environmentally friendly, the consumer in developing enterprises
and markets have constantly raised the requirement for RE [7]. These demand trends and driving
factors are highly significant worldwide. The system absorption ability should be enhanced, and the
consumption of RE should be optimized. With the evolution of the worldwide energy industry, RE
is slowly replacing conventional fossil energy. This transformation implies that power plants and
energy systems need to coordinate the total performance of equipment and multiple sites, enhance
the performance of RE generation forecast, and enhance the energy production assets output [8].
Simultaneously, it is essential to guarantee the economy accordingly and the impacts on the stability
of the electric grids. A RE resource is gradually incorporated with NRE resources into the power grid
to meet energy needs [9]. The historical information of power load is noted at a certain period and an
ordered collection sampled; hence they are a time series. Incorporating solar energy into the energy
system is growing; therefore, forecasting solar energy production has significantly improved system
reliability and control energy quality [10]. In the field of artificial intelligence (AI), deep learning
models have focused on gaining more accurate and reliable systems and have shown excellent tools
to resolve several energy application challenges.

This study presents a new multimodal fusion-based predictive tool for energy consumption
prediction (MDLFM-ECP) of RE and NRE power sources. The proposed MDLFM-ECP technique
involves MDLFM-ECP technique involves the fusion of four deep learning (DL) approaches, namely
long short-term memory (LSTM), bidirectional LSTM (BiLSTM), deep belief network (DBN), and
gated recurrent unit (GRU). Also, the chaotic cat swarm optimization (CCSO) algorithm is applied
to tune the hyperparameters of the DL models. A wide range of experimental analyses is carried
out to examine the improved outcomes of the proposed model. In short, the key contributions are
summarized as follows.

• Developed a new MDLFM-ECP technique for the prediction of energy consumption under RE
and NRE power sources.
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• Perform a fusion-based prediction process using four DL models namely LSTM, BiLSTM,
GRU, and DBN.

• Employ the CCSO algorithm as a hyperparameter optimizer to improve the predictive outcomes
of the DL models.

2 Literature Review

Moradmand et al. [11] examine the energy management of this system in 3 corresponding
scenarios. The 1st and 2nd scenarios are correspondingly appropriate for the markets with an inconstant
and constant price. In addition, the 3rd scenario is presented for considering the uncertainty in RES,
and it is proposed for recompensing the electricity shortages with NRE source. The legitimacy of
the method can be examined in a residential region for 24 h, and the complete result demonstrates the
presented model’s capability for reducing the operation cost. Nabavi et al. [12] predict commercial and
residential energy requirements in Iran with 3 distinct ML algorithms involving logarithmic multiple
linear regression methods, multiple linear regression, and non-linear autoregressive with exogenous
input. This method is designed according to the various aspects involving the shares of RE resources in
gross domestic production, total energy utilization, cost of natural gas, electricity, and the population.

Liu et al. [13] developed an inaccurate Bi-level optimization algorithm based on a regional-
scale hybrid RE and NRE planning system. Elahi et al. [14] predicted energy use indices, the energy
flow of buffalo farms, energy utilization target, production efficacy, sensitivity analysis of energy
inputs impacts, and energy inputs on energy outcome. A well-structured questionnaire was utilized
to collect information on 360 domestic buffalo farms from May–July 2017. The result shows that milk
manufacture was based largely on millet, RE input, concentrates, sorghum, and minerals. Behera and
Behera et al. [15] aim to examine the relationships between RE and NRE utilization and economic
development in the G7 nations (France, the United States, the United Kingdom, Canada, Italy, and
Germany). The research utilized the Pesaran CADF panel second-generation unit root testing to verify
the variable’s stationary property. The research utilized the panel autoregressive distributed lag (P-
ARDL) method to explore the short-run and long-run dynamics. Ikram [16] designed the incorporated
grey architecture for forecasting the development trend of RE and NRE consumption and production
in Asian and Oceania regions in the period of 2017–2025 through new grey prediction methods for
measuring the performances of the grey model.

Zhao et al. [17] present an adjacent accumulation discrete grey method for enhancing the grey
approach’s predictive performance and using novel information. The steadiness of the presented
method is verified, and the novel model could attain high accuracy by using 3 cases. Also, it is employed
to predict the NRE utilization in Asia-Pacific Economic Cooperation. It shows that the discrete grey
approach using adjacent accumulation is efficient. Nadimi et al. [18] employ an econometrics method
for forecasting the energy utilization of Japan till 2030. Next, it employs a stochastic substitution
method for fitting appropriate RE. A significant part of the presented method is based on the Random
Number generation and the recursive Bayesian filter to upgrade the distribution of RE systems via
substitution.

3 The Proposed Model

This study presents a new MDLFM-ECP technique for predicting energy consumption on RE
and NRE sources. The proposed MDLFM-ECP technique involves pre-processing, DL based fusion
model for prediction, and CCSO-based hyperparameter optimization. Fig. 1 illustrates the overall



1270 CSSE, 2023, vol.47, no.1

workflow involved in the MDLFM-ECP model. The comprehensive operation of these progressions
is demonstrated in the following:

Figure 1: Overall process of MDLFM-ECP model

3.1 Stage 1: Data Pre-Processing
In the RE and NRE sources, missing data exist due to climate, preservation, abandoned winds,

sensors fault, measurement error, etc. The new information from predicting techniques adversely
affects outcomes’ forecast accuracy and consistency. Therefore, the pre-treatment of historical infor-
mation to wind power forecasts is attracting considerable attention. During this analysis, a 2-manner
comparative technique was utilized for identifying the abnormal information because of the inability of
manual work to find the wrong information from huge datasets. The 2-manner comparative technique
enhances the condition in which the typical lateral comparative approach could not effectually manage
the loss and mutation of continuous data from the procedure of judgment and modification of
abnormal information. Also, this work accepts the succeeding formula for completing the linear
transformation to 0 and 1 [10]:

xi = xi − xmin

xmax − xmin

(1)

where xi implies the normalisation of new data, xmax and xmin signify the maximal and minimum of new
data correspondingly.

3.2 Stage 2: Fusion-Based Prediction Process
At this stage, the pre-processed data are applied to the fusion model, which consists of four

DL models. The fusion of features is an important process that integrates multiple features. It
mainly depends upon the features fusion using entropy, and the four vectors can be represented
using Eqs. (2)–(4):

fGRU1×n = {GRU1×1, GRU1×2GRU1×3, · · · , GRU1×n} (2)

fLSTM×m = {LSTM1×1, LSTM1×2, LSTM1×3, · · · , LSTM1×m} (3)



CSSE, 2023, vol.47, no.1 1271

fBiLSTM×l = {BiLSTM1×1, BiLSTM1×2, BiLSTM1×3, · · · , BiLSTM1×l}
fDBN1×p = {

DBN1×1, DBN1×2, DBN1×3, · · · , DBN1×p

}
(4)

Integrating derived features into a single vector [19] using Eq. (5).

Fused (features vector) 1 × q =
∑4

i=1
{fGRU1×n, fLSTM×m, fBiLSTM×l, fDBN1×p (5)

where f is the fused vector (1 × 1186). The entropy is utilized on the feature vectors to choose the
optimum ones using the score.

3.2.1 GRU Model

GRU is a simple variant of LSTM, which consists of 2 gates, an “update gate” that has an input
gate, forget gate and a “reset gate”. The GRU has no other memory cell for keeping the data. Hence,
it could only control data inside the unit [20].

updategate = sigmoid
(
WugXt + Wught−1

)
(6)

restgate = siynoid
(
WrgXt + Wrght−1

)
(7)

h̃ = tanh(W (restgate)t ⊗ +Wht−1, Xt) (8)

hτ = (1 − (updaτegate)t) ⊗ ht−1 + (updaτegate)τ ⊗ h̃ (9)

Now, updategate in Eq. (6) determine how much data/contents is upgraded. In Eq. (7), restgate is the
same as updategate; when the gate is fixed to 0, it reads the input sequence and forgets the formerly
estimated state [20]. Furthermore, h̃t demonstrates a similar function as in recurrent unit and ht of
GRU at t time denotes the linear interpolation amongst the present h̃t and prior ht−1 activation state.

3.2.2 LSTM and BiLSTM Models

RNN has been used for regression problems with the consideration of temporal dependency. The
unfolded RNN holds the capacity to operate present data through preliminary data. In the meantime,
RNN suffers from the issue of training the long-term dependency, i.e., resolved by the variations of
RNN. Therefore, the LSTM is proposed as an advanced RNN network and addresses the limitations
of RNN using hidden layer units called memory cells. It is controlled by 3 gates such as output, forget,
and input gates [21]. Fig. 2 depicts the architecture of the LSTM model.

Figure 2: Structure of LSTM
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The process of input, as well as output gates, is utilized for controlling the flow of memory cell
input and output to the remaining networks. Additionally, forget gate was appended to the memory
cell that passes the outcome data through higher weights before the following neurons. The data exist
in memory based on the higher activation result; when the input unit holds higher activation, the data
is saved in the memory cell. Furthermore, when the output element has higher activation later, it passes
the data to the following neurons. Or else, input data with the highest weights reside in memory cells.
LSTM model computes the map among output and input sequences, viz., X = (X1, X2, . . . , Xn) and
= (y1, y2, . . . , yn). Calculate using the succeeding formula [21]:

forgetgate = sigmoid
(
WfgXt + Whfght−1 + bfg

)
(10)

inputgate = sigmoid
(
WigXt + Whight−1 + big

)
(11)

0utputgate = sigmoid
(
WogXt + Whoght−1 + bog

)
(12)

(C) = (C)t−1 ⊗ (forgetgate)t + (inputgate)t ⊗ (tanh (WCXt + WWhCht−1 + bC)) (13)

ht = outputgate ⊗ tanh
(
(C)t−1

)
(14)

In Eqs. (9)–(13) Wig, Wog, WhC, Wfg and bfg, big, bog, bC represents the weight and bias parameter
correspondingly of 3 gates as well as a memory cell. Now, ht−1 represents the previously hidden
layer unit that element-wise added to the weight of 3 gates. Afterwards, the processing of Eq. (12),
(C)t becomes the present memory cell unit. Eq. (13) demonstrates the element-wise multiplication of
previously hidden unit output and prior memory cell unit. Add the non-linearity above the 3 gates
through tanh and sigmoid activation functions that are demonstrated in Eqs. (9)–(13). Now, t − 1 and
t represent previous and present time steps.

To address the limitation of LSTM cell, i.e., capable of processing prior content but not utilising
the upcoming one. It developed the BRNN method, i.e., contained 2 different LSTM hidden units
with equivalent output in contradictory directions. This framework can employ prior and upcoming
data in the output layer. The input series X = (X1, X2, . . . , Xn) in Bi-LSTM is evaluated in forwarding

way as �ht =
( �h1, �h2, �hn

)
and backward directions as ht

← = (h1, h2, hn). The final out of this cell yt is

created using �ht and ht
←, the last sequence of outlooks such as = (y1, y2, . . . yt . . . , yn). Fig. 3 illustrates

the single-cell Bi-LSTM model.

Figure 3: Framework of Bi-LSTM
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3.2.3 DBN Model

DBN holds a bi-directional association known as RBM type connection on every peak layer while
the underneath layer has only top/down association. They are trained layer-wise as pretraining. The
pretraining exists by training the networking elements-wise bottom-up approach, viz., by processing
the first 2 layers as an RBM, later preparing the 2nd and 3rd layers as another RBM, and eventually
preparing for this parameter. Fig. 4 demonstrates the framework of the DBN model. The DBN model
can be mathematically formulated by [22],

P
(
x, h1, . . . , h1

) =
(∏1−2

k=0
P

(
hk|hk+1

))
P

(
h1−1, h1

)
(15)

whereas x = ho, P (hk|hk+1) represent a limited allocation for the observable unit habituated on the
hidden unit of RBM at k-th level, and P (hl−1, h1) denotes the visible, hidden combined allocation in
the top-level RBM [22]. DBN method for the combined allocation among hidden layers hk and the
observed vector x. A graphic depiction of the DBN is demonstrated in Fig. 4.

Figure 4: DBN structure

3.3 Stage 3: Hyperparameter Tuning Using CCSO Algorithm
The CCSO is a population-based metaheuristic approach stimulated by the natural characteristics

of cats and consists of two sub-models: tracing mode (TM) and seeking mode (SM), that defines
the nature of the cats. This technique presented the optimization problem in the continuous field, as
defined below.

f (x) (16)

where x ∈ RN, and M = {x ∈ RN|li ≤ xi ≤ ui, i = 1, 2, · · · , N} ⊆ RN, with li and ui present the lower as
well as upper bounds of xi correspondingly. The structure of the CCSO technique is explained in the
subsequent 6 steps:

Step 1: Generate N cat from the procedure.



1274 CSSE, 2023, vol.47, no.1

Step 2: Arbitrarily sprinkle the cat into the n-dimension solution space and arbitrarily choose
values in the range of maximal velocity to the velocity of all the cats. Next, it randomly picks amount
of cats by setting TM based on MR (mixture ratio) and another set as SM.

Step 3: Estimate the fitness value (FV) of all cats by implementing the places of cats into the
fitness function (FF) that demonstrates the condition of our purpose and preserves the optimum cat
as to memory. Noticeably, it can only require remembering the place of an optimum cat (xbest) because
it signifies the optimum solution so far.

Step 4: Shift the cats based on the flags. When catk is in SM, implement the cat to the SM procedure
or the trace mode procedure. These procedure steps are projected above.

Step 5: Re-pick the number of cats by setting a trace mode based on MR; afterwards, set another
cat as SM.

Step 6: Verify the end criteria. If fulfilled, end the process; else, reiterate steps 3–5. The chaotic
map has been discrete-time dynamical model

xk+1 = f (xk) , 0 < xk < 1, k = 0, 1, 2, · · · (17)

The chosen chaotic map takes chaotic numbers from 0 and 1. It offers novel techniques presenting
a chaotic map in CCSO to improve global convergence by absconding the local solution.

Examining cat behaviors, the 2 behaviors of cats, such as TM and SM: Cats often remain attentive
and move very slowly. This behavior of the cat is denoted as SM. Once the existence of prey is
recognized, the cat chases it rapidly. This behavior of a cat, viz., chasing with higher speed, is denoted
as TM. The cat’s location is utilised to represent the solution set [23]. All the cats have velocity and
position for every fitness value and dimension. Besides this, a flag is utilized to identify the cat in
TM/SM.

In TM, the solution search (Update the location of catk) of CCSO is determined as Eq. (18):

xk,i = xk,i + vk,i + r1 × c1 × (
xbesti − xk,i

)
i = 1, 2, · · · , N (18)

Whereas xbest,i represent the cat’s location with optimal FV; xk,i indicates the location of catk. c1

signifies a constant, and r1 denotes an arbitrary number in zero and one [0, 1].

Based on Eq. (18), the arbitrary number r1 can be altered by the elected chaotic map, and the
assimilation is altered as

xk,i = xk,i + vk,i + r1 × {cs} × (
xbest,i − xk,i

)
, i = 1, 2, · · · , N (19)

whereas {cs} denotes a chaotic sequence depending on the elected map.

4 Performance Validation

This section investigates a comprehensive experimental validation of the MDLFM-ECP technique
on the test data, and the results are examined under varying aspects. In this work, four kinds of energy
sources in dataset namely fossil fuel (FF), behind the meter (BTM), wind power (WP), and power
purchase agreement (PPA). Table 1 provides a detailed comparative results analysis of the MDLFM-
ECP technique [24]. The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. The parameter settings are given as follows:
learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU.
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Table 1: Result analysis of MDLFM-ECP technique with various measures

Methods MAE MSE RMSE RMSLE

Lasso 58.70 5373.70 73.30 0.13
Ridge 56.70 5151.00 71.80 0.13
G-boost 24.80 1119.60 33.50 0.06
MLP model 56.20 5250.30 72.50 0.12
SVR model 75.80 9753.20 98.80 0.17
XG-boost 23.50 777.50 27.90 0.05
ML-PEC 15.70 473.00 21.70 0.04
MDLFM-ECP 14.36 391.25 19.78 0.03

Fig. 5 offers the MAE and RMSE results of the MDLFM-ECP and existing techniques. Observing
the results in terms of MAE, the results portrayed that the SVR, Lasso, Ridge, and MLP techniques
have accomplished poor outcomes with higher MAE values of 75.8, 58.7, 56.7, and 56.2, respectively.
In addition, the G-Boost and XGBoost techniques have resulted in moderately closer MAE of 24.8
and 23.5, respectively. Though the ML-PEC technique has gained near optimal MAE of 15.7, the
proposed MDLFM-ECP technique has showcased effective outcomes with the least MAE of 14.36.
Likewise, on detecting the outcomes for RMSE, the results exhibited that the SVR, Lasso, Ridge, and
MLP approaches have accomplished the least result with the maximal RMSE values of 98.8, 73.3,
71.8, and 72.5, correspondingly. Moreover, the G-Boost and XGBoost systems have correspondingly
resulted in moderately closer RMSE of 33.5 and 27.9. But, the ML-PEC manner has attained near
optimum RMSE of 21.7, and the projected MDLFM-ECP technique has outperformed the effective
outcome with the minimum RMSE of 19.78.

Figure 5: Result analysis of MDLFM-ECP technique in terms of MAE and RMSE

Fig. 6 provides the MSE analysis of the MDLFM-ECP manner with existing techniques. The
figure shows that the SVR, Lasso, Ridge, and MLP systems have accomplished poor outcomes with
higher MSE values of 9753.2, 5373.7, 5151.0, and 5250.3, respectively. In addition, the G-Boost
and XGBoost approaches have resulted in moderately closer MSE of 1119.6 and 777.5, respectively.
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Though the ML-PEC scheme has gained near optimal MSE of 473.0, the presented MDLFM-ECP
technique has outperformed effective outcomes with the least MSE of 391.25.

Figure 6: MSE analysis of MDLFM-ECP model with existing approaches

Fig. 7 gives the RMSLE results of the MDLFM-ECP and existing approaches. The results
demonstrated that the SVR, Lasso, Ridge, and MLP techniques had accomplished poor outcomes
with superior RMSLE values of 0.17, 0.13, 0.13, and 0.12. Followed by the G-Boost and XGBoost
manners have resulted in moderately closer RMSLE of 0.06 and 0.05, respectively. Afterwards, the
ML-PEC technique gained near optimal RMSLE of 0.04, and the presented MDLFM-ECP technique
has portrayed a productive outcome with a minimal RMSLE of 0.03.

Figure 7: RMSE analysis of MDLFM-ECP model with existing manners

Table 2 provides the results analysis of the proposed model in terms of actual and predicted error
under three runs. Fig. 8 demonstrates the results analysis of the MDLFM-ECP technique in terms of
actual vs. predicted error under run-1. The results demonstrated that the proposed model had attained
the least differences between the actual and predicted error.
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Table 2: Predicted error analysis of MDLFM-ECP model with different runs

Actual Predicted error

Run-1 Run-2 Run-3

630.69 631.87 631.52 630.89
614.32 615.87 614.94 615.99
590.94 590.31 591.60 591.55
579.24 577.90 579.78 579.92
574.57 576.57 578.17 577.78
572.23 571.25 570.02 571.29
579.24 580.90 582.47 582.42
583.92 585.74 586.83 588.81
590.94 592.30 593.22 593.67
614.32 613.26 613.36 613.24
626.01 626.61 627.10 627.35
637.71 636.69 635.44 636.47
637.71 637.14 638.19 637.03
630.69 632.15 630.99 632.60
633.03 631.21 631.03 632.31
633.03 633.03 631.31 632.60
635.37 633.58 631.75 631.60
642.38 642.12 642.68 643.54
654.08 655.97 657.76 658.50
651.74 649.83 651.36 649.67
665.77 664.11 665.24 666.71
665.77 664.88 666.79 668.33
654.08 652.55 651.41 650.75
640.05 640.77 640.19 638.20
623.68 624.91 626.13 625.09

Figure 8: Predicted error analysis of MDLFM-ECP model on run-1
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Fig. 9 showcases the performance analysis of the projected method in terms of actual vs. predicted
error under run-2. The outcomes showed that the presented system had attained minimum differences
between actual and predicted errors.

Figure 9: Predicted error analysis of MDLFM-ECP model on run-2

Fig. 10 illustrates the performance analysis of the proposed approach with respect to actual vs.
predicted error under run-3. The results outperformed that the projected model has gained minimum
differences between the actual and predicted error.

Figure 10: Predicted error analysis of MDLFM-ECP model on run-3

Finally, an overall MAPE analysis of the MDLFM-ECP technique with existing techniques takes
place in Table 3 and Fig. 11. The experimental outcome has shown that the SVR, MLPRegressor,
Ridge, and Lasso techniques have obtained higher MAPE of 21.61, 19.52, 10.41, and 10.39 respectively.
In line with this, the XGBoost, Gradient Boosting, and ML-PEC-RE + NRE techniques have
obtained moderately closer MAPE of 5.77, 6.86, and 4.29, respectively. However, the presented
MDLFM-DCP technique has outperformed the other techniques with a MAPE of 3.58.

The results mentioned above ensure that the MDLFM-ECP technique has accomplished profi-
cient outcomes with the minimum MAE, MSE, RMSE, RMSLE, and MAPE of 14.36, 391.25, 19.78,
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0.03, and 3.58, respectively. Therefore, the proposed MDLFM-ECP technique is an effective tool for
predicting energy utilization.

Table 3: Comparative analysis of the MDLFM-ECP model with existing approaches

Methods Min. error% Max. error% Overall MAPE%

Lasso 0.00008 48.09 10.39
Ridge 0.00077 47.82 10.41
Gradient boost 0.00004 39.01 6.86
MLP regressor 0.00164 57.74 19.52
SVR 0.00701 80.19 21.61
XGBoost 0.00018 42.22 5.77
ML-PEC-RE + NRE 0.00139 35.26 4.29
MDLFM-ECP 0.00004 33.18 3.58

Figure 11: Comparative analysis of MDLFM-ECP model concerning overall MAPE

5 Conclusion

This study presents a new MDLFM-ECP technique for predicting energy utilization on RE and
NRE sources. Actual data may influence the prediction performance of the results in prediction
approaches. The proposed MDLFM-ECP technique involves pre-processing, DL based fusion model
for prediction, and CCSO-based hyperparameter optimization. Moreover, the CCSO algorithm is
applied to tune the hyperparameters of the DL algorithms. A series of simulations take place to ensure
the superior efficiency of the MDLFM-ECP technique, and the simulation outcome emphasizes the
improved results of the MDLFM-ECP technique over the other approaches. As a part of the future
scope, the presented MDLFM-ECP technique can be tested using real-time data.
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