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ABSTRACT

Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles
come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system’s overall accuracy.
Deep learning is considered to be an efficient method for object detection in vision-based systems. In this paper,
we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5
(YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step,
all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast
level of the images. These pre-processed images are segmented by labelling each pixel to extract the uniform regions
to aid the detection phase. A single-stage detector YOLOv5 is used to detect and locate vehicles in images. Each
detection was exposed to Speeded Up Robust Feature (SURF) feature extraction to track multiple vehicles. Based on
this, a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting
them using the feature-matching technique. Further, we implemented a Kalman filter to track multiple vehicles. In
the end, the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by
the tracking algorithm. The experimental results and comparison reveal that our proposed vehicle detection and
tracking system outperformed other state-of-the-art systems. The proposed implemented system provided 94.1%
detection precision for Roundabout and 96.1% detection precision for Vehicle Aerial Imaging from Drone (VAID)
datasets, respectively.
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1 Introduction

Intelligent Traffic monitoring has gained significant importance for traffic control and manage-
ment. Due to recent technological advancements, many computers vision-algorithms have become
popular in surveillance systems, i.e., traffic surveillance, crowd monitoring, anomaly detection, and
many more. Researchers have designed many vision-based systems that can detect objects and track
them efficiently and accurately [1,2]. With the popularity of mobile platforms, vast traffic videos can
be obtained for analysis [3,4]. These means of data collection can provide a high viewing angle, thus
covering a more distant road surface [5,6]. However, some limitations need to be addressed to develop
an effective traffic monitoring system. These limitations include variable object size at a large viewing
angle which lowers the overall detection and tracking accuracy of the model [7]. In this article, we
focus on the above-mentioned issues and propose a viable solution for efficient traffic monitoring
based on semantic segmentation and the You Only Look Once (YOLO) algorithm. As we are dealing
with variable vehicle sizes, we need a robust method for object detection. We have combined the YOLO
algorithm with the semantic segmentation technique to improve the overall results. The segmentation
technique helps reduce the complexity of the images so that in return the computational cost as well
as time complexity of the. The model also reduces [8–10]. YOLOv5 is a real-time object detection
algorithm that is popular in many computer vision tasks for its capability to recognize objects of
different sizes at a fast speed [11,12]. Our proposed traffic monitoring system consists of six stages. In
the first stage, images are extracted from the traffic footage. These images are pre-processed to make
them suitable for processing in the later stages. In the next stage, we applied semantic segmentation
techniques to label and extract uniform regions in the image by labelling each pixel. We have used and
compared three segmentation techniques in terms of their accuracy score and chose the best result
to feed into the detection phase. For detection, YOLOv4 is implemented as it is a powerful object
recognition method. All the detections are used for SURF feature extraction to allocate each vehicle
a unique number so that they can be tracked simultaneously in the preceding frames. The Kalman
filter is used to track vehicles by predicting their locations in the next frames. Finally, we estimate the
route of tracked automobiles by plotting the predicted locations. We performed extensive experiments
on two benchmark datasets to validate our model: Vehicle Aerial Imaging from Drone (VAID) and
Roundabout. The major contributions of our proposed traffic monitoring system are as follows:

• To reduce the computational cost and time complexity, we implemented and compared three
different semantic segmentation techniques in terms of their accuracy rate and used the best
one for detection.

• We used the YOLOv4 algorithm for vehicle detection to increase the performance of the model.
• To enable multi-object tracking, we extracted SURF features from the detected vehicles and

allocated them a unique number so that they can be identified in the succeeding frames.
• We used the Kalman filter for multi-object tracking across the frames extracted from the traffic

scene videos.

The rest of the paper is divided into six sections as follows: The relevant research is included
in Section 2. The proposed model architecture is detailed in Section 3. The experimentation phase’s
results are presented in Section 4, along with a comparison to the state-of-the-art techniques. Finally,
Section 5 summarizes the main points and discusses potential directions for further research.
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2 Literature Review

In the past 20 years, intelligent vehicle monitoring has drawn a lot of attention from the scientific
community. The most current developments in the field of vehicle monitoring are briefly covered in
this section. We divide the literature into two streams as shown below.

2.1 Traffic Monitoring Using Conventional Methods

Traditional machine learning methods have been used for developing traffic monitoring appli-
cations. In [13], the merging of the SIFT and SVM allows for vehicle detection. Pyramid pooling,
sliding windows, and NMS are integrated to further increase classification ability, which significantly
improves the outputs provided for vehicle detection. Zhou et al. [14] implemented an adaptive method
for background estimation. Further, Principal Component Analysis (PCA) is used to create a low-
dimensional feature from the two histograms of each candidate, and a support vector machine classifier
is used to decide whether or not it belongs to a real vehicle. After combining all of the categorized
findings, a parallelogram is created to depict each vehicle’s shape. Also, in [15], optical flow algorithm
is used to determine the vehicles’ moving direction flow along with a distance factor calculation. For
tracking, feature templates for each vehicle were generated. An approach to context-aware recognition
and tracking in urban aerial data is presented in [16]. The foreground mask is used in [17] to extract
the blobs for vehicle detection. The overlapping blobs are separated by assuming that the width of
the vehicle is not bigger than the width of the lane. The spatial pyramid context-aware feature-based
tracker, motion prediction-based tracking, and motion detection-based tracking were the two types of
tracking systems that the model was based on. The standard machine vision method can identify the
vehicle more quickly, but it does not perform well in situations where the brightness of the image
is changing, the background is moving irregularly, or there are slow-moving cars or complicated
scenarios. Consequently, it is challenging to apply these algorithms to real scenarios and to obtain
the accuracy and robustness required for practical application. The performance of deep learning
algorithms is better for detection tasks especially when the object varies in the images. Therefore,
our proposed algorithm uses YOLOv5 to detect vehicles in aerial images. Also, to reduce the overall
computational complexity we used, the SURF feature combined with the Kalman filter for tracking.

2.2 Traffic Monitoring Using YOLO Algorithm

The use of You Only Look Once (YOLO) to analyze traffic vision data is one of the most
well-known examples [18]. Based on its capacity to process multiple photos more quickly than
traditional region-based convolutional neural networks (RCNNs), YOLO is highly used in real-
time traffic monitoring. Because of the great detection accuracy and speed of YOLOv3, a new and
effective detector called YOLO-ACN is proposed in [19]. An attention mechanism, a soft-NMS,
CIoU (complete intersection over union) loss function, and depth-wise separable convolution are
added to this method to make it better. The slow detection speed issue was solved in [20] using
an enhanced YOLOv4-based video stream vehicle detection algorithm. The YOLOv4 algorithm is
initially described theoretically in this study, followed by an algorithmic method for accelerating
detection speed, and finally, actual road tests the algorithm in this work is utilized to make decisions
for safe vehicle driving and can improve recognition speed without compromising accuracy. In another
study [21], YOLOv3 was used for vehicle detection. The tracking was accomplished by using the
centroid points of each vehicle bounding box. Experiments show that the YOLOv3 algorithm beats the
conventional method in terms of detection accuracy and rate. A vehicle detection and counting method
based on the combination of YOLOv4 and Convolutional Neural Network (CNN) is presented in
[22]. They used the DeepSORT tracker to track vehicles effectively. For object detection, researchers
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proposed an enhanced YOLOv3 transfer learning-based deep learning system [23]. The network is
trained on a challenging data set for this work, and the output is quick and accurate, which is
advantageous for applications that require detecting objects.

To reduce the computational complexity and increase the efficiency of the overall model, this
paper combines the YOLOv5 algorithm with a segmentation technique for vehicle detection.

3 Materials and Methods

In this article, we proposed an effective traffic monitoring model. The model consists of six phases.
First of all, all the images are pre-processed. These pre-processed images are segmented where each
pixel is assigned a unique label to extract uniform regions from the images. To recognize vehicles in
each segmented image, we employed the YOLOv5 algorithm which is fast and robust in detecting
objects of variable sizes. To accomplish tracking across the different image frames, we extracted SURF
features, based on which, a unique number was assigned to ease the identification of the vehicle in the
succeeding frames during multi-vehicle tracking. These vehicles were tracked using the Kalman filter
which predicts the location based on the detections. In the end, the path followed by each vehicle
is estimated using the centroid points of the rectangular bounding box. Fig. 1 describes the overall
architecture of a vision-based vehicle detection and tracking system.

Figure 1: Block diagram of the proposed vision-based vehicle detection and tracking system

3.1 Preprocessing

Pre-processing is done to decrease noise and undesired distortion. This enhances the appearance
of images that are required for further processing. To ensure consistency in the images, we resized all
images to 768 × 768-pixel dimensions. To enhance the brightness level, we applied gamma correction
[24,25] which is given by Eq. (1).

S = K1/TT = log
0.5 × 255

P
(1)

where K represents the input image and T denotes the computed gamma value. S is for the output
image that has shrunk to [0,255]. The brightness enhancement output is visualized in Fig. 2.
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Figure 2: Contrast level enhancement using gamma correction (a) original images, (b) pre-processed
images

3.2 Semantic Segmentation Framework

To reduce the computational complexity of the model, we applied semantic segmentation to
the images before passing it to the YOLOv5 algorithm. For this purpose, we applied three different
segmentation techniques and compared them in terms of their error rate. The best results were used
for further processing. The details of each segmentation technique are given below.

3.2.1 XGBoost Segmentation

XGBoost is a Gradient-boosted trees method. It uses a supervised learning strategy that utilizes
regularisation and specialized loss function optimization, as well as function approximation [26,27].
Therefore, to extract meaningful features on which we can train the XGBoost classifier, we used
the Canny edge features [28], Scharr [29], Gaussian [30], and Sobel edge detection [31] filters. The
classifier training process utilizes the retrieved feature set. Based on a combination of Classification
and Regression Trees (CART) techniques, XGBoost improves and optimizes the algorithm to deliver
superior outcomes. If g(x) represents the single tree output, then it can be denoted using Eq. (2).

g(x) = dr (xj) (2)

where dq stands for the matching leaf r’s score and x for the input feature vector, Consequently, the
ensemble tree’s output is given in Eq. (3).

hj =
∑c

c=1
gc(xj) (3)

The objective function stated in Eq. (4) is minimised using the XGBoost algorithm in each
iteration.

W (t) =
∑n

j=1
w

(
hj, ĥt−1

j + gt(xj)
)

+
∑t

i=1
Ω(gi) (4)

where gi is the regularisation term that controls the model’s complexity and prevents overfitting, and

w
(

hj, ĥt−1
j + gt(xj)

)
signifies the training loss between the actual label hj and the output label ĥt−1

j for

the n number of samples. The complexity can be calculated by using Eq. (5).

� (g) = γ M + 1
2
λ

∑M

i=1
d2

i (5)
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where M stands for the number of leaves, γ is the dataset-dependent pseudo-regularization hyperpa-
rameter, and λ denotes the L2 norm for leaf weights. XGBoost uses gradients to approximate the loss
function to find the ideal value of the objective function. The segmentation result using the XGBoost
classifier is shown in Fig. 3.

Figure 3: Semantic segmentation using XGBoost

3.2.2 FCM Segmentation

FCM is a powerful segmentation technique that groups the pixels in such a way that a single pixel
may belong to more than one cluster. This multi-occurrence of the same element can be referred to as
fuzzy. In the FCM segmentation process, the objective function is optimised in several iterations to get
the final output. Throughout the iterative procedure, the clustering centres and membership degrees
have been continuously updated [32,33]. Performance index HFCM is formulated using Eq. (6).

HFCM = (Q, S) =
∑r

i=1

∑N

b=1
zt

ib‖qb − si‖2, 1 < t < ∞ (6)

where r is the number of clusters, N is the number of pixels, qb is the bth pixel, si is the centre of the
ith cluster, and t is the blur exponent. Each cluster centre and membership function are updated using
Eqs. (7) and (8).

zt
ib = 1

∑c
j=1

(
l2ib
l2jb

) 1
t−1

(7)

sj =
∑N

k=1 zt
ibqb∑N

k=1 zt
ib

(8)

where l2
ib represents the distance between pixel qb and cluster centroid sj and zt

ib stands for the
membership matrix that belongs to [0, 1]. The FCM objective function is minimized by assigning
pixels with high membership to pixels’ values when they are adjacent to the center of their respective
class and small membership values when they are far from them. The segmentation result using FCM
is given in Fig. 4.

3.2.3 Maximum Entropy Scaled Segmentation

We also used the maximum entropy scaled segmentation technique. In this segmentation, edge
weights are used to describe similarities using a similarity matrix and are used to depict an image over
a graph (G = K, E) with vertices that represent image pixels [33]. To ensure that the final equation (G
= K, A) is correct, we must select an edge group (A) to a limit of E. Although every edge in the graph
maintains a self-loop, this fact alone is insufficient to solve the graph partition problem. When the edge
of the related vertices is excluded from A, we increase the edge weight for the self-loop so that each
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linked vertex has a constant incidence. We also employ the entropy scale of the random walk (RW)
criteria on the graph to obtain dense and reliable clusters for segmentation purposes. The probability
set functions prob u,v are denoted using Eq. (9) when the RW distribution remains constant.

probu,v (A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Iu,v

Wu

if u �= v and eu,v ∈ A

0 if u �= y and eu,v /∈ A

1 −
∑

v eu,v ∈ AWu,v

W
if u = v

(9)

Figure 4: Semantic segmentation using FCM

As a result, the function given in Eq. (10) may be used to represent the entropy scale of the RW
on (G = K, A).

S(A) = −
∑

u

μu

∑
y

probi.j(A)log
(
probu,v(A)

)
(10)

We use a balancing function to generate clusters that have equal-sized dimensions. Then, the ZA.
The diffused cluster’s membership function can be written using Eq. (11).

pZA
(i) = |Si|

|K| , i = 1, . . . , NA (11)

where SA = S1,S2, . . . , SNA represents the set of edges. Also, the balancing function is given in Eq. (12).

B(A) = H(A) − NA = −
∑

i

pZA
(i)log

(
pZA

(i)
) − NA (12)

while NA supports a single cluster, entropy S(A) supports clusters with similar sizes. Clusters that are
flexible, symmetric, and organized are encouraged by the objective function, which is the combination
of the composition of the entropy rate and the balance function. The clustering is achieved by
optimizing the objective function about the edges set as given in Eq. (13).

maxA H(A) + B(A) (13)

when NA is more than or equal to n and subject to A is a subset of E, the weight of the balancing term
is assumed to be 0. The segmentation result using the maximum entropy scaled segmentation is shown
in Fig. 5.

The three implemented segmentation techniques are compared based on the error rate to select
the best results for further processing. It can be seen from Table 1 that the error rate for maximum
entropy scaled segmentation is low as compared to the other two methods. Therefore, the results from
this technique were passed to the vehicle detection phase based on YOLOv5. The Comparison of Error
Rate of Semantic Segmentation Techniques over Roundabout and VAID Dataset.
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Figure 5: Entropy scaled segmentation

Table 1: Comparison of error rate of semantic segmentation techniques over Roundabout and VAID
datasets

Datasets Error rate (%)

XGBoost FCM Maximum entropy

Roundabout 17.6 14.4 10.8
VAID 15.3 14.5 9.2

3.3 Vehicle Detection Using YOLOv5

YOLO algorithms are one-stage detectors that are extensively employed in object identification
systems, particularly for vehicle detection tasks, due to their high-performance characteristics. YOLO
focuses on global information for target detection as it inputs the full image and returns the position
of the object bounding box [34,35].

The processing time of YOLO deeper networks is drastically decreased using the single-stage
detector mechanism. Additionally, it works better when detecting small targets [36–38]. The architec-
ture of YOLOv5 consists of four main components as shown in Fig. 5. The backbone mainly contains
Cross-Stage Partial (CSP) networks and Spatial Pyramid Pooling (SPP) to extract the best region of the
image for further feature extraction. The SPP module makes the detection invariant to object sizes. The
Neck module creates feature pyramids using Path Aggregation (PANet) and Feature Pyramid Network
(FPN). The bottom-up path and low-level feature propagation are enhanced by the FPN structure.
Additionally, localization features are transmitted via the PAN framework from lower feature maps to
higher feature maps. The final prediction of the object detection and its corresponding bounding box
is detected using the three convolutional layers in the Head module. YOLOv5 employs the Sigmoid
Linear Unit (SiLU) activation function in its hidden layers, while the output layer’s convolution process
makes use of the Sigmoid activation function. Both these activation functions are given in Eqs. (14)
and (15).

SiLU (u) = u × σ(u) (14)

where σ(u) represents the logistic sigmoid.

S (u) = 1
1 + e−u

(15)
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where S(u) denotes the sigmoid activation function. The detection results from the YOLOv5 algorithm
are shown in Fig. 6.

Figure 6: Vehicle detection using YOLOv5

3.4 Feature Extraction Unique Number Allocation

Each frame contains more than one vehicle. To simultaneously track these vehicles across all the
frames, we must allocate them a unique number which eases each vehicle identification. Also, these
unique allotted numbers must be retrieved based on some appearance feature. For this purpose, we
subjected all the detected vehicles to Speeded-Up Robust Feature (SURF) extraction [39–41]. It is
efficient for image comparison. Since SURF features can be quickly computed, they are reliable for
object recognition in real-time scenarios. It included a description and an interest point detector. For
the interesting locations that the detector had discovered, the descriptor created feature vectors. Using
Eq. (16), the integral and interest point has been calculated.

SΣ(k) =
∑u�x

u=0

∑v�y

v=0
S(u, v) (16)

where SΣ(k) is the input image and S(u,v) represents the integral image at the position k = (x, y)T .
Additionally, the Hessian matrix as shown in Eq. (17) was used to calculate the blob structure in the
image.

H(x, σ) =
[

Lxx(k, σ) Lxy(k, σ)

Lxy(k, σ) Lyy(k, σ)

]
(17)

where Lxx(k, σ), Lxy(k, σ), and Lyy(k, σ) represent the second-order derivative of the Gaussian function
convoluted with image S. The number assigned to each vehicle is recovered by using the thresholding
method based on the number of feature matching. If no matches are found, then the vehicle is registered
as a new one. The number allocated to each vehicle for tracking is shown in Fig. 7.

3.5 Multi-Vehicle Tracking via Kalman Filter

To track multi-vehicles in the succeeding frames, we implemented the Kalman filter. Based on
flawed and untrustworthy data, the Kalman filter produces hidden variable estimations. Additionally,
the Kalman filter predicts the state of the system using earlier calculations [42–46]. When employing
the Kalman filter, we consider a tracking system in which cs is the state vector describing the dynamic
behaviour of the object and subscript s is the discrete time. Eq. (18) can be used to define the state
transition from time s−1 to time s.

cs = Fcs−1 + Bus−1 + ws−1 (18)
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where B symbolizes the control input matrix subjected to the control vector, i.e., us−1, and F represents
the state transition matrix applied to the prior state vector cs−1. Additionally, the process noise vector
ws−1 is made up of white Gaussian noise having a zero mean and covariance A as stated in Eq. (19).

p(w) ∼ M(0, A) (19)

Figure 7: ID assignment to each detected vehicle based on SURF feature extraction

To show how state and measurement relate to one another at the present time step K, represented
by Eq. (20), the measurement model and the process model are integrated.

zs = Ncs + vs (20)

where vs represents the measurement of the noise vector with a covariance N having probability
distribution p(v) ∼ M(0, J). N is the measurement matrix and zs denotes the measurement vector.
The Kalman filter has two stages: prediction and correction. The prediction step moves the present
state forward and provides an a priori evaluation of the state ĉ+

s−1. Eqs. (21) and (22) can be used to
estimate the projected state and predicted error covariance.

ĉ−
s = Fĉ+

s−1 + Bus−1 (21)

R−
s = FR+

s−1FT + A (22)

Feedback is given throughout the corrective phase. Actual measurement is added to the a priori
estimate provided in Eq. (23) to enhance the a posteriori estimate ĉ+

s .

ĉ+
s = ĉ−

s + Ksỹ (23)

where ỹ is the measurement residual and Ks denotes the Kalman gain. Both are equivalent to Eqs. (24)
and (25), respectively.

Ks = F−
sNT

(
J + NF−

sNT
)−1

(24)

ỹ = zs − Nĉ−
s (25)

Eq. (26) can be used to obtain the updated error covariance.

F+
s = (I − KsN)F−

s (26)

In the equations above, the operator ∧ stands for an estimation of a variable. The superscripts −
and +, respectively, denote prior and posterior estimations. The projected state estimate was built on
top of the previously revised state estimate. State error covariance is the name given to the symbol F .
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Using Eq. (27), covariance may be calculated for any variable x.

cov (x) = E[
(
x − x̂

) (
x − x̂

)T
]T (27)

where E stands for the expected mean value. The initialization phase of the Kalman filter, which is
necessary for its use, calls for the initial guess of the state estimate, ĉ+

0 , and the error covariance matrix,

F+
0 along with matrices A and J. The updated error covariance is lower than the anticipated error

covariance following the use of the measurement in the update stage. The prediction and updated
stages are used to implement the Kalman filter for each time step K. The results of the Kalman filter
tracking are given in Fig. 8.

Figure 8: Tracking vehicles across the image frames using Kalman filter

3.6 Path Estimation via Centroid Point

To compute the path followed by each tracked vehicle as far as the tracking is being done. We
calculated the centre points of the estimated rectangular bounding box obtained from the estimated
position by the Kalman filter. These points were plotted and joined for each car. The steps involved in
path estimation are given in Algorithm 1. The algorithm takes segmented images and corresponding
detected vehicles as input. All detected vehicles are subjected to SURF feature extraction. For every
image frame, if the feature matches with the previously detected vehicle and the number of matches is
greater than 6 then the ID is retrieved and assigned to the newly detected car. All the detected cars are
then tracked using the Kalman filter and rectangular coordinates are extracted to plot the trajectories
as shown in Fig. 9 where the plotted paths of each vehicle are represented using a different color.

Figure 9: Path estimation of vehicles being tracked across image frames



3326 CMC, 2024, vol.80, no.2

Algorithm 1: Path Estimation of Tracked Vehicles
Input: I M = {I 1, I 2, . . . , Iz}

// segmented images
Output: {Tr}N

r=1 // vehicle trajectories
D={D1, D2, . . . , DN ←YOLOv5(IM) //Detected Vehicles
IDNumber=0
fv=[]//feature vector
For j = 1 to the length of D
new_vehicle←SURF(Dj)

If fv is empty then
Increment IDNumber by 1
fv←new_vehicle,IDNumber

Else
match← (new_vehicle, fv)

If matches>6
RetrieveIdentificationNumber(Di)

Else
Increment IDNumber by 1
fv←new_vehicle,IDNumber

end for
IdentificationNumbers={id1, id2, . . . , idm}
(D,IdentificationNumbers)←KalmanFilter(D) //Predicted locations of vehicles by kalman filter
For i = 1 to the length of D
xi

1, xi
2, yi

1, yi
2 ←ExtractRectangularCoordinatesofVehicle()

xcentroid ← (xi
1 + xi

2)

2

ycentroid ← (yi
1 + yi

2)

2
Tr ← [xcentroid, ycentroid]

end for
return vehicle trajectories

4 Experiments and Results

Our proposed vision-based vehicle detection and tracking model has been built over a laptop
having Intel Core i5-7200U 2.50 GHz of processing power, 6 GB RAM, and Python tools. The
proposed model performed well when tested over the two datasets: Roundabout and VAID dataset.
Furthermore, the dataset and experimentation details are discussed below. A contrast with the other
state-of-the-art techniques has also been drawn.

4.1 Datasets Description

The dataset used to test our proposed algorithm is described in detail below.

4.1.1 Roundabout Traffic Dataset

The Roundabout aerial image dataset [47] contains 15,474 RGB images. All these images are in
.jpg format. The dataset consists of different traffic locations having different traffic patterns. Each
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image is combined with an XML file in the Visual Object Classes (PASCAL VOC) format to indicate
the locations of the cars in each of these pictures.

4.1.2 VAID Dataset

The VAID (Vehicle Aerial Imaging from Drone) dataset [48] has 5985 aerial photographs of
Taiwan. The photos are in the .jpg format having a resolution of 1137 × 640 pixels. All the traffic
sequences are captured by using a drone under variable lighting and traffic conditions dataset.

4.2 Performance Measurement and Result Analysis

We implemented three different segmentation methods, i.e., by using XGBoost classifier, FCM,
and maximum entropy scaled semantic segmentation. For comparison, we used the accuracy and
sensitivity measure as shown in Tables 2 and 3. Entropy-scaled segmentation has the highest accuracy
of 89.2 and 90.8 for both datasets.

Table 2: Accuracy comparison over Roundabout and VAID datasets

Datasets Accuracy (%)

XGBoost FCM Maximum entropy

Roundabout 82.4 85.6 89.2
VAID 84.7 85.5 90.8

Table 3: Sensitivity comparison over Roundabout and VAID datasets

Datasets Sensitivity

XGBoost FCM Maximum entropy

Roundabout 0.812 0.819 0.857
VAID 0.787 0.801 0.901

The segmented images were subjected to vehicle detection. Table 4 shows the results of the
detection algorithm over the two benchmark datasets namely Roundabout and VAID datasets,
respectively.

Table 4: Vehicle detection performance over Roundabout and VAID datasets

Datasets Precision Recall F1 score

Roundabout 94.1 88.2 91.1
VAID 96.3 90.7 93.4

After detection, as our model tracks multiple vehicles across the image frames, therefore, we used
Multi-Object Tracking Accuracy (MOTA) and Multi-Object Tracking Precision (MOTP) to assess the
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performance of the tracking algorithm calculated as follows:

MOTA = 1 −
∑

t (FNt + FPt + IDSwitchest)∑
t Ground Trutht

(28)

MOTP =
∑

t,i Bounding Box Overlapt,i∑
t No.of Matchest

(29)

where t is the number of frames. The algorithm achieved a MOTA of 87.2% and a MOTP of 92.3%
on the Roundabout dataset, while on the VAID dataset, it achieved a MOTA of 91.7% and an MTP
of 95.6%. These scores demonstrate the algorithm’s effectiveness in tracking objects accurately across
different environments. Table 5 shows the results for the tracking algorithm on the two benchmark
datasets.

Table 5: Vehicle tracking performance over Roundabout and VAID datasets

Datasets MOTA MTP

Roundabout 87.2 92.3
VAID 91.7 95.6

4.3 Comparison with State-of-the-Art Techniques

In this section, we compared our proposed vehicle detection and tracking algorithm with other
state-of-the-art methods. Table 6 shows the comparison of the proposed detection algorithm whereas
Table 7 shows the comparison of tracking algorithms.

Table 6: Vehicle detection comparison with SOTA techniques over Roundabout and VAID datasets

Datasets Methods Precision

Roundabout Optical Flow [49] 56.1
Frame Differencing [50] 79.5
Proposed 94.1

VAID YOLOv4 [48] 83.12
Proposed 96.3

Table 7: Vehicle tracking comparison with other state-of-the-art techniques over Roundabout and
VAID datasets

Datasets Methods Precision

Roundabout Template matching [51] 71.3
Centroid tracking [51] 81.3
Proposed 87.2

(Continued)
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Table 7 (continued)

Datasets Methods Precision

VAID Template matching [50] 78.8
Centroid tracking [21] 84.6
Proposed 91.7

5 Conclusion

In conclusion, this paper has presented a vision-based vehicle detection and monitoring system.
Firstly, all the images are pre-processed to enhance the contrast level. These images were segmented
into uniform regions using the semantic segmentation technique by applying FCN. The remarkable
results of the proposed model show that it outperforms the SOTA remote sensing scene classification
techniques. Vehicle detection is done by employing the YOLOv5 algorithm. All the detected vehicles
are subjected to SURF feature extraction based on which a number is assigned to each of them.
These unique numbers were retrieved in the succeeding frames using the feature-matching method
to locate multiple vehicles. The tracking is accomplished using the Kalman filter. Path estimation of
each tracked vehicle is done by calculating and plotting the centroid points of the rectangular bounding
box. The model is experimented on two publicly available datasets, i.e., roundabout and VAID datasets.
Our proposed algorithm achieved a detection precision of 94.1% and 96.3% and a tracking accuracy of
87.2% and 91.7%, respectively. The results show that the proposed system outperformed other state-of-
the-art techniques. In the future, we will perform additional research on pattern recognition methods
and other feature extraction techniques to enhance the outcomes of both the detection and tracking
algorithms.
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