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ABSTRACT

With the rapid development of electric vehicles, the requirements for charging stations are getting higher and higher.
In this study, we constructed a charging station topology network in Nanjing through the Space-L method, mapping
charging stations as network nodes and constructing edges through road relationships. The experiment introduced
five EV charging recommendation strategies (based on distance, number of fast charging piles, user preference,
price, and overall rating) used to simulate disordered charging caused by different user preferences, and the impact
of the network dynamic robustness in case of node failure is explored by simulating the load-capacity cascade failure
model. In this paper, two important metrics for evaluating network robustness are selected: the relative size of the
maximum connected subgraph and the network efficiency. The experimental results point out that in the price
recommendation strategy, the network stability significantly decreases when the node failure ratio reaches 75.4%,
while the fast charging quantity recommendation strategy significantly decreases when the node failure ratio is
62.3%. Therefore, the robustness of the charging station network is best under the price recommendation, while the
network robustness is poor under the fast charging quantity recommendation. While the network robustness is poor
under preference recommendation. Based on this finding, this study particularly emphasizes that in the process of
improving the robustness of the charging station network, it is necessary to comprehensively consider the market
demand and guide users to charge in an orderly manner by reasonably adjusting the price strategy. This strategy
not only effectively prevents network stability problems that may result from disorderly charging behavior, but also
enhances the ability of the charging network to resist node failure and improves the overall dynamic robustness of
the network.
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1 Introduction

In the context of the growing global emphasis on sustainable development, new energy vehicles are
increasingly recognized as a crucial means to alleviate environmental pollution and reduce dependence
on traditional energy sources. Consequently, their adoption rate is steadily increasing. However, with
the widespread application of new energy vehicles, the issue of the layout and site selection of charging
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stations has progressively highlighted its significance. The arrangement of charging stations not only
directly affects the utilization rate of charging facilities but also relates to the convenience of user
charging and even the enhancement of the entire charging network’s operational efficiency. Therefore,
how to effectively guide the charging behavior of EV users to improve the network robustness is the
main issue of current research.

In the field of electric vehicle (EV) charging station research, Deb et al. investigated the impact of
EV charging station loads on distribution network voltage stability, power losses, reliability metrics,
and economic losses [1]. Li et al. developed Optimal Charging Station Deployment (OCSD), which
utilizes a system based on historical EV taxi trajectory data, roadmap data, and available charging
station information to optimize charging station layout and operation [2]. Ahmad et al. discussed the
impacts of EV loads on the distribution network, environmental impacts, and economic impacts [3].
Huang et al. proposed two optimization models for two different charging modes (fast charging and
slow charging) aiming to minimize the total cost [4]. Hosseini et al. proposed a Bayesian network
(BN) model that takes into account not only quantitative but also qualitative (subjective) factors [5].
Yang et al. presented the problem of designing an EV battery service network taking into account
customer satisfaction [6]. Yang et al. proposed a data-driven approach to optimizing the charging
network of an EV by eliminating redundant charging stations from the existing charging station
networks [7]. Qin et al. minimized the waiting time required for charging by spatially and temporally
scheduling charging [8]. These research efforts have provided insights and approaches from multiple
perspectives for the planning, operation, and optimization of EV charging stations; nevertheless, there
is a dearth of systematic research on the critical area of charging station network robustness.

In light of this, the present paper aims to fill this research gap by constructing a topological
network of charging stations and a load-capacity cascading failure model. We simulate network
scenarios based on recommending strategies that comprehensively consider key factors such as the
distance from users to charging stations, user preferences for charging stations, total charging costs,
and the number of fast-charging piles. This paper delves into the robustness of charging station
networks. Moreover, we employ network efficiency and connectivity as metrics to evaluate network
performance, providing a comprehensive analysis of the robustness of charging station networks.

In the field of EV charging coordination strategy research, literature [9] developed a charging
scheduling strategy using a Markov chain model combined with stochastic considerations of charging
demand, aiming to effectively reduce the peak-to-valley difference in electricity demand and reduce the
charging cost for users. Another study [10] designed a charging recommendation mechanism aiming
to minimize the total charging time of taxis by analyzing their GPS data. Although existing charging
post-recommendation algorithms have made progress on specific objectives, such as reducing charging
cost [9] and shortening charging time [10], these studies tend to focus on a single optimization objective
and lack a comprehensive and balanced solution.

This study aims to fill a gap in the existing research field by constructing a charging station
topology network model in which each charging station is considered a node in the network and
the corresponding nodes are connected to each other through an edge when there is a road network
connection between two charging stations. In addition, this study constructs a load-capacity cascade
failure model and introduces five recommended strategies to analyze the specific impact on the
robustness of the charging station network. The model assumes that once a charging station receives
a load that exceeds its capacity limit, the station becomes unavailable and transfers the load it was
carrying to neighboring stations. This mechanism leads to a redistribution of loads in the network,
which in turn triggers a series of cascading failures, posing a potential threat to the stability of the
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network. The study further analyzes the robustness of the charging station network in depth, using
the relative size of the maximum connectivity subgraph and the network efficiency as a measure
of robustness. Given that the disorderly charging behavior of electric vehicles may trigger group
effects and pose potential threats to the stability of the power grid, it is particularly important to
systematically analyze the robustness of the charging station network.

Through this research, we hope to more accurately reveal the intrinsic principles of the robustness
of charging station networks and propose targeted preventative measures to enhance the safety
and reliability of the entire charging station network. This will not only help promote the further
development of new energy vehicles but also offer theoretical support and practical guidance for the
optimized layout and efficient operation of charging station networks.

The remainder of this paper is structured as follows. Section 2 introduces the proposed construc-
tion of the charging station topological network and the load-capacity cascading failure model, along
with the recommendation strategy method. In Section 3, we evaluate the charging station network and
analyze the experimental results. Finally, in Section 4, we conclude and discuss future work.

2 Model Framework

This study initially selects Global Positioning System (GPS) data of online ride-hailing vehicles
and charging station data in Nanjing, Jiangsu Province, as the fundamental information sources. To
identify charging behaviors, we assume that the longest parking duration at the start time during
a day for each ride-hailing vehicle signifies the beginning of the charging period. Subsequently, we
introduce the Space-L method to construct the Nanjing charging station network model. Within this
network, a load-capacity cascading failure model is established. Next, five electric vehicle charging
recommendation strategies are introduced, including distance recommendation, fast-charging pile
quantity recommendation, preference recommendation, price recommendation, and comprehensive
recommendation, which recommend the corresponding charging stations for each vehicle in chrono-
logical order. When the load of the charging station exceeds its own capacity, the load carried by
the charging station is assigned to the neighboring nodes, which triggers the cascade failure effect. In
addition, this study analyses the dynamic robustness of the model and the impact of the recommended
policy on the robustness. The exact flow of this study is shown in Fig. 1. The following is the pseudo-
code of this thesis.

Begin
1. for each V in vehicles do
2. {station_found = false;max_score = −Infinity;best_station = null;best_index = −1}
3. for index, S in enumerate(C) do
4. score = calculate_score(V, S)
5. if score > max_score and S.capacity > 0 then
6. {max_score = score;best_station = S;best_index = index}
7. if best_station != null then
8. {R.append((V, best_station));best_station.capacity–= 1;station_found = true }
9. all_inactive = true
10. for each S in C do
11. if S.capacity > 0 then
12. all_inactive = false;break

(Continued)
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Begin (continued)
13. if all_inactive then
14. break
15. if not station_found then
16. continue
17. removed_stations.append(best_station)
18. remove(C, best_index)
19. for S in removed_stations do
20. output(S)
End

Building a network of charging 
stations in Nanjing

Building a Recommendation Strategy

Nanjing Charging Station Data

Nanjing City net car data

Vehicles are recommended in 
chronological order according to the 

recommendation strategy

Calculation of network 
robustness based on site 

failure sequences

End of cascade fault process

Are all charging stations 
disabledTrue

False

Determine the initial load and 
maximum capacity of the node

Whether all the charging
posts in the charging station i are 

occupied

Charging station i fails, removes the charging 
station and recalculates the score for the remaining 

charging stations

Recommend vehicles to the highest 
rated charging station i based on the 

recommendation strategy

True

False

Figure 1: Model framework diagram
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R: This is an empty list to store the recommended vehicle-charging station pairing results

S: Charging station

C: List of charging stations

V: Vehicle

2.1 Charging Station Network Construction

Existing network construction methods can mainly be summarized into four types: Space-L [11],
Space-P [12], Space-B [13], and Space-C [14]. The core of the Space-L method lies in transforming
real-life trajectories and public transit stops into nodes within the network, with edges representing
the physical connections between stops. If two stops in reality are not connected, they are not directly
linked in the network model either. This transformation intuitively depicts the topological structure of
transportation networks and provides significant value for analyzing the network’s own construction
and fundamental operational performance.

In this study, we apply the Space-L method to establish the charging station network model. The
model uses charging stations as nodes and determines whether to establish an edge between nodes
based on the direct road connection within 10 kilometers. This not only visually presents the structure
of the charging station network but also facilitates a macroscopic analysis of the network’s layout
and functionality. The topology of the established Nanjing charging station network model is shown
in Fig. 2.

Figure 2: Topology of Nanjing charging station network

2.2 Recommendation Strategy Construction

In order to evaluate the robustness of the network, five recommendation strategies based on
electric vehicle (EV) charging demand are selected in this study to mimic the users’ psychological
preferences so as to simulate the disordered charging caused by different user preferences. Specifically,
these include distance recommendation, fast-charging pile quantity recommendation, preference
recommendation, price recommendation, and total score recommendation [15].



6 JIOT, 2024, vol.6

Distance Recommendation Strategy: This strategy calculates the physical distance (in meters)
between each vehicle and all charging stations based on Nanjing’s road network data. Considering
consumers’ tendency to choose nearby charging, this method optimizes travel paths to help users
shorten journey times and improve overall efficiency.

Fast-Charging Pile Quantity Recommendation Strategy: This strategy makes recommendations
based on the number of fast-charging piles provided by charging stations in Nanjing. Fast-charging
piles at charging stations are highly attractive to users because they significantly reduce the time cost
of charging electric vehicles. The recommendation system prioritizes stations with a greater number
of fast-charging piles, thereby enhancing the convenience and efficiency of user charging.

Preference Recommendation Strategy: In the initial analysis phase of this strategy, the distance
between ride-hailing vehicles and all charging stations within Nanjing is calculated, and charging
stations within a 10-kilometer range are selected. If there are more than five stations within the range,
five are randomly chosen; if fewer than five, all available stations are included. Subsequently, random
preference values (integers from 1 to 10) are generated for these charging stations to simulate user
satisfaction levels, thereby inferring their future choices of charging stations.

Price Recommendation Strategy: In this strategy, price information from various charging stations
in Nanjing is collected, including charging fees and service fees at different times, with the total defined
as the cost per kilowatt-hour (unit: yuan/kWh). The recommendation system guides users to stations
with lower total costs to alleviate their financial burden.

Total Score Recommendation Strategy: This comprehensive strategy takes into account four fac-
tors: charging cost, time efficiency, user preference, and geographical location. It transforms the multi-
objective planning problem into a fuzzy single-objective planning problem, assigns corresponding
weights according to the importance of each objective function, performs linear weighted processing,
and derives the final comprehensive score to recommend the best charging station to users.

In summary, the above recommendation strategies are constructed to improve network robustness
by guiding the charging behavior of EV users.

2.3 Construction of the Load-Capacity Cascading Failure Model

If a site receives more load than its own capacity, it will also fail and the load it carries will
be further distributed to its neighboring sites, thus triggering a cascade failure scenario [16]. In this
thesis, for the new energy vehicle charging station network, the quantitative metric of load is defined
as the total number of charging requests processed by the current charging station. Load is a real-time
variable, which can visually reflect the usage of the charging station at any moment in time. At each
time point t, each charging station i receives a certain number of charging requests, which is denoted
by Ri (t), and the load quantity Li is defined as the total number of charging requests processed by
charging station i at time t. Therefore, in each iteration, when a new charging request arrives, Li (t) is
updated with the new number of requests Ri (t). The real-time load of the charging station, Li (t), is
given by the following equation:

Li (t) = Ri (t) (1)

In this study, ‘Capacity’ is used to describe the maximum service capacity of the charging station,
i.e., how many electric vehicles can be charged at the same time, which directly reflects the efficiency of
the charging station’s charging pile utilization. Therefore, if charging station i has Pi charging piles, its
capacity Ci at any given moment t can be calculated by subtracting the number of currently occupied
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charging piles (i.e., the load Li (t)) from the total number of charging piles Pi, as given in the following
equation:

Ci = Pi − Li (t) (2)

Upon completion of the above steps, the model will advance to the next time point t + 1, and
repeat the process to simulate the dynamic behavior of the charging station network over successive
periods. The iteration of the model will continue until a specific termination condition is met. The
termination condition of this model is defined as all the charging stations reaching the failure state at
the same time, i.e., at any time point t, the whole charging network is considered to have reached the
failure state if all the charging stations have a load Li (t) greater than their capacity Ci. Specifically,
if Li (t) > Ci is satisfied at a time point t for all charging stations i in the network, the iteration of the
whole charging network terminates at this time point.

By simulating cascading failures, this study aims to reveal the robustness of the charging station
network when faced with overloading situations and to provide a scientific basis for developing
preventive measures and improving the robustness of the charging network.

3 Simulation Analysis

In this study, we aim to construct and optimize the charging station network model to enhance
its stability in the face of unexpected events and provide theoretical support for the robustness of
the charging station network. The study first adopts the Space-L method to construct a topological
network model of charging stations in Nanjing, Jiangsu Province, based on the GPS data of networked
vehicles in Nanjing. In this model, each charging station is abstracted as a node in the network, while
the road links between nodes are represented by edges. Further, we introduce a load-capacity cascade
failure model in this network, where the load is defined as the number of charging requests currently
being processed by the charging station, Capacity, on the other hand, refers to the number of electric
vehicles that a charging station can serve at the same time, i.e., its charging post utilization rate.

In this study, five EV charging recommendation strategies (based on distance, number of fast
charging piles, user preference, price, and overall score) are designed to mimic users’ psychological
preferences. When the load of a charging station exceeds its capacity, the station is regarded as a
failed node and its load is redistributed to neighboring nodes, triggering cascade failure, which has an
impact on the stable operation of the network. Therefore, the study and prevention of cascading failure
is important to ensure the stability of the charging station network. Through dynamic robustness
analysis, this study aims to reduce the potential impact of cascade failure on the network.

To ensure the accuracy of the analysis, this study selected the GPS data of the network from 23
to 27 October 2019, compared the charging behaviors on weekdays and weekends, and divided the
data into five intervals according to different times of the day (0–8 h, 8–11 h, 11–17 h, 17–22 h, and
22–24 h) in order to carry out a detailed time period analysis. On this basis, the experiment used the five
charging recommendation strategies described previously to simulate the load transfer to neighboring
stations when the charging station load is overloaded. It is found that the results of network robustness
analysis for each time period under different recommendation strategies are consistent, therefore, this
paper takes the time period of 0–8 h on weekdays as an example to explore in depth the key factors
affecting the dynamic robustness of the network under different recommendation strategies.
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3.1 Experimental Conditions

This experiment is written in Python in pycharm 2021 and conducted on a computer equipped
with 16 GB RAM and AMD Ryzen 7 5800 H with Radeon Graphics@3.20 GHz processor. The
charging cost data of the charging station is obtained from “ChargeBar”, the latitude and longitude
data is obtained from Baidu map API, and the geographic coordinate system is wgs84. The distance
from the EV to the charging station is obtained from “OpenStreetMap” to obtain road network data
for calculation. The GPS data of Nanjing, Jiangsu Province on the 23rd and 27th of October 2019
were selected, and about 6,000 vehicles operated on each of these five days.

Before this experimental simulation, the following assumptions were made:

1. Each ride-hailing vehicle is an electric vehicle.
2. Each ride-hailing vehicle charges once a day.
3. The start time of the longest parking duration during the day is considered the charging

demand time.
4. The recommended charging station for each ride-hailing vehicle prioritizes the use of fast-

charging piles.
5. Each ride-hailing vehicle can also travel to a recommended charging station when its battery

is low.
6. Each ride-hailing vehicle will be driven to the recommended charging station to charge when

the battery is low, and no further consideration will be given to the next charging station.
7. The type, battery capacity, and battery SoC are the same for each ride-hailing vehicle.

3.2 Data Processing

The start_time represents the start time and end_time represents the end time of the GPS data
record of the netbook car in Nanjing used in this paper, and the start time to the end time is the period
of the netbook car that has the longest stopping time in this day. The user preference data for charging
stations used in this study is calculated based on the latitude and longitude data for charging stations
within 10 km and randomly initialized from 1–10 for five of the charging stations, and if there are
fewer than five charging stations within 10 km then the preference is initialized for all charging stations
within 10 km. The preprocessed network car data is shown in Table 1 and the preference degree data
is shown in Table 2.

Table 1: Sample table of processed EV demand point data

ID Longitude Latitude Start time End_time

30165763 118.732755292177 31.971285895771 2019/10/25 4:12:33 2019/10/25 4:55:59
30165764 118.748690275451 31.957361952077 2019/10/25 4:33:22 2019/10/25 5:19:22

3.3 Recommendation Model Simulation

In this paper, the total score recommendation strategy, the weights of charging price, charging
time, preference of charging station, and distance to charging station are set as 0.38, 0.32, 0.25, and
0.05. The recommended output is shown in Table 3.
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Table 2: Sample preference data after initialization

ID Charging
station at
Laoshan forest
park, Pukou
district,
Nanjing,
Jiangsu, China

2# Charging
station of Hetai
building,
Gulou district,
Nanjing,
Jiangsu, China

Hentai
mansion 1#
Charging
station, Gulou
district,
Nanjing,
Jiangsu, China

Yufa ecological
park charging
station, Pukou
district,
Nanjing,
Jiangsu, China

New city
headquarters
building public
charging
station, Pukou
district,
Nanjing,
Jiangsu, China

5924922 3 5 8 9 6

Table 3: Sample table of recommended results

ID Distance Name of charging station Start time Comprehensive
score

4222879 3966.082 Nanjing Star
Charge-Yuhuatai Wenjue
Auto Service Charging
Station, Nanjing, Jiangsu,
China

2019/10/27 4:21:35 0.624

4224256 3788.157 Hongshan Road Charging
Station, Donghua Hongshan
Auto Life Plaza, Nanjing,
Jiangsu, China

2019/10/26 6:57:21 0.568

Note: The distances in the table are actual user-to-charging station distances, not straight-line distances, so some will be greater than 10
kilometers.

3.4 Evaluation Metrics

The robustness of a network means that the network maintains most of its connectivity and
functionality after removing some nodes. This means that the network is resilient to node failures,
attacks, or other anomalies. Robustness can be measured in many ways, and in this study, maximum
connectivity subgraph and network efficiency are used as evaluation metrics. If some nodes are
removed, maximum connectivity subgraph and network efficiency, then the network is considered
to have high robustness.

(1) Nodal degree

In the topology study of charging station networks, node degree is a basic and important metric,
which indicates the number of other charging stations that a charging station is directly connected
to. The level of node degree directly reflects the connectivity breadth of the charging station in the
network and is a key indicator for assessing the network connectivity density and the closeness of the
relationship between nodes. A charging station with a high node degree usually plays the role of a hub
in the network, which has an important impact on the stability and scalability of the network.
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(2) Number of nodes

The number of node mediators is another important indicator of node centrality in a network,
which describes how often a node acts as a mediator of paths between other pairs of nodes in the
network. Specifically, charging stations with a high node mediator number act as key intermediary
points for information transfer and resource allocation in the network, and their location is critical
to the overall efficiency and performance of the network. The analysis of the number of node
mediators helps to identify key nodes in the network, which are of particular value in optimizing the
network structure, improving the efficiency of resource allocation, and developing emergency response
strategies. The study of node mediators provides a deeper understanding of the dynamic characteristics
and potential optimization space of charging station networks.

(3) Maximum connectivity subgraph

Connectivity is an important metric for assessing the structural robustness of a network, reflecting
its ability to maintain connectivity in the event of node or link failures. Mathematically, it is defined
as the scale of the largest connected subgraph relative to the total size of the network and can be
calculated using the following formula [17]:

S =
∣∣V ′

d

∣∣
|Vd| (3)

where |V’d| is the number of nodes in the largest connected subgraph, and |V d| represents the total
number of nodes in the network. The value of connectivity ranges between 0 and 1, with a higher
value indicating stronger overall connectivity of the network. Even if some nodes fail, the network can
still maintain a high degree of connectivity, thus reflecting the good robustness of the network.

(4) Network efficiency

Network efficiency measures the efficiency of information transmission within the network. It is
based on the average of the reciprocals of the shortest paths between all pairs of nodes in the network.
A network with high efficiency can maintain efficient information transmission even when nodes fail,
making network efficiency an important metric for measuring network robustness. The formula for
network efficiency is as follows [18]:

E = 1
|Vd| (|Vd| − 1)

∑

i,j∈N,i �=j

1
dij

(4)

where |V d| is the total number of nodes, and did is the shortest path between node i and node j. The
denominator |V d|(|V d |– 1) accounts for all possible combinations of node pairs in the network, while
the numerator is the sum of the reciprocals of the shortest paths between these node pairs. It is worth
noting that when there is no path connecting node i and node j, the distance can be considered infinite,
and its reciprocal is zero.

(5) Node failure ratio

Node failure ratio is an important metric to assess the robustness and fault tolerance of the
network, which can help in assessing the magnitude of the attack on the network, the node failure
ratio is calculated using the following formula:

K = |V |
|Vd| (5)



JIOT, 2024, vol.6 11

where |V | represents the number of failed nodes in the network and |V d | represents the total number
of nodes in the charging station network.

The maximum connectivity subgraph and efficiency of the network can be quantitatively evaluated
by the above formulae and used as objective metrics for evaluating the robustness of the net-
work. In empirical analyses, the change of these two metrics can be calculated by simulating the
network subjected to random failures or purposeful attacks to study the robustness properties of the
network.

3.5 Experimental Results and Analysis

In this study, we introduce five recommendation strategies based on distance, number of fast-
charging piles, user preference, price, and total rating, which have not been explored in previous
analyses of the dynamic robustness of EV charging station networks. These five strategy simulations
provide a unique perspective to analyze and understand the influencing factors of charging network
robustness. In a significant difference from the work of Zhang et al. [19], Zhang et al. focused on
modeling the impact of random attacks and four specific malicious attacks on charging station
network robustness. In contrast, our study focuses on modeling the dynamic impact of user behavior
on the robustness of charging station networks through different recommendation strategies. The
analysis of experimental results in this study is divided into two main parts: dynamic robustness
analysis and recommendation strategy analysis.

In the dynamic robustness analysis section, we focus on evaluating the stability and generalization
ability of the network under different conditions. To this end, we examined the relative size of the
maximum connected subgraph of the network as well as the network efficiency metrics and compared
the performance under various scenarios through simulation experiments with real data tests. As
shown in Figs. 3 and 4, under the influence of different recommendation strategies, both the network
efficiency and the relative size of the maximum connected subgraph show a decreasing trend as
the node failure ratio increases. In particular, the data in the figures show that the relative size of
the maximum connected subgraph shows a sharp decrease at specific node failure ratios under five
different recommendation strategies. Table 4 provides the node failure ratios that lead to a sharp
decrease in the relative size of the maximum connected subgraph under each recommendation strategy,
as well as the higher and lower values where the relative size of the maximum connected subgraph
decreases sharply. In addition, the network efficiency and robustness evaluations under these node
failure ratios are listed in the table, thus providing a quantitative perspective for evaluating the impact
of different strategies on network stability. The failure of the five stations under these five node failure
ratios results in a sharp decrease in the relative size of the maximum connectivity subgraph and the
charging station network is essentially paralyzed. Therefore, these five nodes are considered to be the
critical nodes of the network, and they are essential for maintaining the integrity and functionality
of the entire charging network. The failed critical nodes are shown in Fig. 5. The changes in network
performance metrics under the failure ratio of critical nodes are shown in Table 4. Sites that fail under
the preference recommendation strategy are not considered in the dynamic robustness analysis due to
the random nature of their generation. However, it is worth noting that the other four failed sites are
geographically close to each other and they are more densely connected. While this dense connectivity
facilitates the rapid reorganization of the network after the failure of a single site, it also increases the
vulnerability of the network, as the failure of a single site may have a knock-on effect on neighboring
sites. The node degrees of these four sites are 13, 26, 20, and 23, while the node medians are 0.0227,
0.0460, 0.0041, and 0.0137, respectively, showing their different roles and importance in the network;
however, it is worth noting that not all sites identified as critical nodes have high node degrees or
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high node medians. This observation suggests that when assessing the importance of a node, it is
important not to rely solely on the two metrics of node degree or node mediator number. Instead,
a more comprehensive assessment framework that takes into account the multiple roles and potential
influence of nodes in the network is needed.

Figure 3: Maximum connectivity subgraph

Figure 4: Network efficiency
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Table 4: Network performance comparison under different recommendation policies

Recommended
strategies

Node failure ratio
(%)

The relative size of
maximal connected
subgraphs

Network efficiency Robustness
evaluation

Price
recommendation

75.4 0.250 → 0.143 0.049 High

Distance
recommendation

67.5 0.325 → 0.198 0.079 Medium

Fast charging
quantity
recommendation

62.3 0.381 → 0.222 0.117 Low

Preference
recommendation

66.3 0.337 → 0.210 0.083 Medium

Comprehensive
recommendations

65.5 0.345 → 0.198 0.093 Medium

key point

Figure 5: Distribution of key nodes

On the other hand, the recommendation strategy analysis section aims to provide insights into how
recommendation strategies affect the robustness of the network. The recommendation strategies mimic
users’ psychological preferences, thus simulating the disordered charging caused by different user
preferences. The changes in network performance metrics under different recommendation strategies
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are shown in Table 4, where the network stability is significantly reduced in the price recommendation
strategy when the node failure ratio reaches 75.4%, while the fast charging quantity recommendation
is significantly reduced when the node failure ratio is 62.3%. Based on this finding, in the process of
improving the network robustness of charging stations, it is necessary to comprehensively consider
the market demand and guide users to charge in an orderly manner by reasonably adjusting the
price, which not only effectively prevents the network stability problem caused by disorderly charging
behavior, but also enhances the ability of the charging network to resist node failure and improves the
overall dynamic robustness of the network.

The analytical results of this study show that regardless of the recommendation strategy adopted,
the failure of key nodes affects the network not only in their own failure but also in the chain
reaction they may trigger, which can quickly spread to the entire network. Furthermore, we note
that not all key nodes have a high node degree or high node median. This finding emphasizes the
need for a more comprehensive assessment framework that takes into account the multiple roles
and potential influence of nodes in the network when assessing node importance. In addition, the
price recommendation strategy is effective in maintaining the stability of the charging network, while
the preference recommendation strategy is poor. These findings provide important references for the
planning and management of charging networks, pointing out areas to focus on in future research
and strategy development. Appropriate price adjustment is often more effective in motivating users to
charge in an orderly manner and preventing network stability problems caused by disordered charging
behavior induced by personal preferences.

4 Conclusion

In this study, we constructed a charging station network model in Nanjing using the Space-L
method, and through a series of empirical analyses, we deeply explored the effects of five EV charging
recommendation strategies (distance priority, number of fast-charging piles priority, user preference,
price orientation, and total score) on the dynamic robustness of the charging station network. The
core innovation of this study is to mimic various users’ psychological preferences with different
recommendation strategies to simulate the impact of users’ disordered charging on the robustness of
the charging station network. The experimental results show that the failure of key nodes significantly
affects the network connectivity under various recommendation strategies, and we find that reasonable
adjustment of prices can effectively prevent disordered charging behaviors, enhance the charging
station network’s resilience against node failure, and improve the overall dynamic robustness of the
network. This finding suggests that when designing recommendation systems for charging networks,
we should pay attention to the moderating role of the price factor and its potential value in guiding
user behavior and maintaining network stability.

Therefore, this study suggests that a market-based dynamic pricing mechanism should be used
in the operation and management of charging networks to incentivize users to make more rational
charging choices. In this way, not only can the negative impact of disorderly charging behavior
on network stability be reduced, but also the adaptability and resilience of the network to various
contingencies can be improved. Ultimately, this price-led strategy will help build a more robust,
efficient, and user-friendly charging network environment.

Looking ahead, with the rapid development of the electric vehicle market and technological
iteration, the planning and management of charging infrastructure need to be closely integrated with
GIS technology and real-time big data analysis to achieve more precise and efficient optimization
of charging station layouts. The theoretical model established in this study and the conclusions drawn
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provide a solid theoretical basis for the future planning and policy-making of urban charging facilities,
helping decision-makers better meet the ever-changing market demands and promote the charging
network towards a higher level of dynamic robustness. It also encourages further exploration and prac-
tice of innovative charging service strategies and intelligent dispatching methods to comprehensively
enhance the operational efficiency and service quality of the charging network in complex network
environments.
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