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ABSTRACT. Spatio-temporal (ST) graphs have been used in many application domains to model
evolving ST phenomenon. Such models represent the underlying structure of the phenomenon in
terms of its entities and different types of spatial interactions between them. The reason behind
using graph-based models to represent ST phenomenon is due to the existing well-established
graph analysis tools and algorithms which can be directly applied to analyze the phenomenon
under consideration. In this paper, considering the use case of two distinct, highly dynamic
phenomena - invasive team sports, with a focus on handball and urban road traffic, we propose
a spatio-temporal graph model applicable to both these phenomena. Different types of entities
and spatial relations which make up these phenomena are highlighted to formalize the graph.
Furthermore, the idea of graph-based pattern detection in both these phenomena is explored.
Different types of ST patterns for both ST phenomena are discussed and the problem of pattern
detection is formalized as the problem of subgraph isomorphism for dynamic graphs. Finally,
the results of our algorithm to detect random ST patterns in random ST graphs are presented.
The ideas discussed in this paper are applicable to other ST phenomena as well.

RÉSUMÉ. Les graphes spatio-temporels sont utilisés dans de nombreux domaines d’application
pour modéliser les phénomènes spatio-temporels. Ces modèles représentent la structure sous-
jacente du phénomène en termes d’entités et de différents types d’interactions spatiales entre
elles. La motivation d’utiliser des modèles à base de graphes pour représenter le phénomène
ST est due à l’existence d’outils et d’algorithmes d’analyse de graphes bien établis qui peuvent
être directement appliqués pour analyser le phénomène considéré. Dans cet article, en con-
sidérant le cas d’usage de deux phénomènes distincts et très dynamiques - les sports collectifs,
avec un regard particulier sur le handball et le trafic routier urbain, nous proposons un modèle
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de graphe spatio-temporel applicable à ces deux phénomènes. Les différents types d’entités et
les relations spatiales qui composent ces phénomènes sont soulignés pour formaliser ce graphe.
En outre, nous explorons l’ideé de la détection de motifs basés sur les graphes dans le handball
et le trafic routier urbain. Différents types de motifs spatio-temporels pour les deux phénomènes
spatio-temporels sont discutés et le problème de la détection des motifs est formalisé comme le
problème de l’isomorphisme des sous-graphes pour les graphes dynamiques. Enfin, les résul-
tats de notre algorithme de détection de motifs spatio-temporels aléatoires dans les graphes
aléatoires sont présentés. Les idées discutées dans cet article sont également applicables à
d’autres phénomènes spatio-temporels.
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1. Introduction

Graphs have proven to be a significant modeling tool in different kinds of appli-
cations such as bioinformatics, telecommunications, social networks etc. They rep-
resent the underlying structure of the phenomenon being modeled in terms of the
entities which make up that phenomenon as well as the interactions/relations between
those entities. For example, in bioinformatics, graphs represent molecules or protein
interaction networks (Bonnici et al., 2013), in social network analysis, graphs repre-
sent relationships between people (such as drug traffickers in (Fan, 2012)), in video
analysis for object tracking, graphs represent the adjacency between different object
planes present in the video (Diot et al., 2012) etc. When both spatial and temporal di-
mensions are taken into account, the resultant graphs are called spatio-temporal (ST)
graphs. Such graphs have been used to model the dynamics of street networks (Costes
et al., 2015), for underlining spatial relations between places and events (Maduako,
Wachowicz, 2019) etc.

Representing a ST phenomenon using a graph helps to explain the evolution of
the phenomenon in terms of the evolution of the graph, i.e., by modeling change in
the attributes of nodes and edges of the graph and by modeling change in its overall
structure (addition/removal of nodes and edges). The evolution of the graph makes
the temporal dimension of the model explicit. The spatial dimension of the model, on
the other hand, can be incorporated directly using spatial relations between the entities
(nodes) of the phenomenon (graph). Furthermore, with this modeling approach, well
developed graph algorithms can be applied in order to understand the characteristics
of the underlying ST phenomenon.

One way to analyse the ST phenomenon is to detect some meaningful and perti-
nent patterns in the phenomenon which might explain its overall ST evolution and/or
help in better understanding the interactions between all or some of its entities. Once



Spatio-temporal pattern detection in ST graphs 379

such patterns are detected, further reasoning can be carried out about the phenomenon.
Depending on the requirements of the analysis and the phenomenon being modeled,
pertinent patterns might represent the visitation behaviour of animals (Bracis et al.,
2018), proximity of trajectories of moving objects (Demšar, Virrantaus, 2010), move-
ment patterns of soccer players (Beernaerts et al., 2020) etc. In these examples, the
patterns detected are formalized in terms of quantitative data about the phenomenon.
For example, in (Bracis et al., 2018), the authors look at the animal trajectory data to
calculate their re-visitation patterns in a specific area. Such patterns are described as
the number of times the animal’s trajectory passes through an area of interest. The au-
thors then use these patterns and statistical clustering-based methods to determine the
frequently visited locations of a turkey vulture. Similarly, (Demšar, Virrantaus, 2010)
explores ship trajectory data to find spatio-temporal similarities between the move-
ment patterns of different kinds of ships, and (Beernaerts et al., 2020) uses Qualitative
Trajectory Calculus (QTC) (Weghe et al., 2004) to describe the relative movement of
soccer players and detect similar movement patterns.

Although useful, such statistical patterns are not able to take into account the
underlying structure of the phenomenon and do not naturally incorporate the inter-
actions between different entities of the phenomenon. Graphs, naturally, model the
phenomenon in terms of its entities and relations between those entities and, hence,
formalize the underlying structure of the phenomenon. Furthermore, graph-based pat-
terns take into account this structural point-of-view and are capable of providing ad-
ditional information not included within statistical patterns.

In this paper, we take the graph-based approach to model two different kinds of
ST phenomena, invasive team sports and urban road traffic. Invasive team sports are
sports in which one team has to invade the playing area of another team to score
points, such as football, handball, basketball etc. In this paper, we model handball as
a ST phenomenon. This paper is an extended version of our previous work (Oberoi,
Del Mondo, 2021) in which we applied the graph models to represent the same two
phenomena, and discussed various structural patterns which can be detected in both
these phenomena using an algorithm we developed based on the idea of subgraph
isomorphism for dynamic graphs (Oberoi, 2019).

As compared to our previous work, in this paper, we enhance our graph models
with spatial relations (represented as edge labels) between different entities (nodes)
for both phenomena. In addition, we incorporate spatial relations in the definition
of graph-based patterns themselves, making them spatio-temporal (as opposed to just
structural patterns in (Oberoi, Del Mondo, 2021)) in the true sense. Furthermore, we
update the mathematical formulation of the problem of subgraph isomorphism in order
to take into account the edge labels while searching for suitable solutions. Finally, we
report the results obtained by applying the updated representation of spatio-temporal
phenomena and spatio-temporal patterns, both modeled as random ST graphs, and
the new definition of subgraph isomorphism in our previously proposed algorithm
(Oberoi, 2019).
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The paper is organised as follows. Section 2 presents the related work about spa-
tial and spatio-temporal graphs as well as explores some existing research related to
graph-based pattern detection. Section 3 presents a general dynamic graph model
which is applied to both ST phenomena considered in this paper: handball in Section
4 and urban road traffic in Section 5. In addition, Sections 4 and 5 describe various
entities and spatial relations between them as well as present some examples of spatio-
temporal patterns for both ST phenomena. Section 6 mathematically formalizes the
updated definition of subgraph isomorphism for static and dynamic graphs and reports
the results obtained by applying this new definition using our algorithm for detecting
dynamic patterns in dynamic graphs. Finally, Section 7 concludes the paper while
giving future research directions.

2. Related work

Graphs have been used to model different kinds of spatial and spatio-temporal phe-
nomena for last many years. In addition to the structural modeling approach proposed
by graph-based models, an interesting discussion is about the kind of analysis that
can be carried out once the spatial or spatio-temporal phenomenon is modeled using a
graph. In this section, we will discuss some of the existing research related to spatial
and spatio-temporal graph models and then we will focus on the issue of graph-based
pattern detection and present some of the existing work in this field.

2.1. Spatial graphs

Historically, graphs have been used to model spatial structures for various appli-
cations. For example, (B. Jiang et al., 2000) proposed a graph representation, called
connectivity graph, to model the spatial structure of a building for developing a cog-
nitive point of view of space using the concept of space syntax. Another interesting
and well studied application of graphs in representing spatial structures is in model-
ing street networks. Using an approach based on primal graphs (Porta et al., 2006),
where the nodes of the graph represent the intersections and the edges represent the
road segments connecting those intersections, different properties of street networks,
such as the topological structure of the network and the centrality or the importance
of a given street, have been studied (Claramunt, Winter, 2007). In addition to street
networks, graphs have also been used to model the spatial layout of a given land in
terms of buildings, parcels and road segments, and various topological spatial relations
between them (Domingo et al., 2013).

2.2. Spatio-temporal graphs

In order to understand the dynamics of a spatio-temporal phenomenon, time has to
be added as dimension in the model representing that phenomenon. However, adding
the temporal information in the graph-based model is not so straightforward, and many
formalisms are proposed in the literature.
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A trivial approach is to consider time as an external variable and represent the
evolution of the graph using static snapshots at discrete time instants. For example, for
modeling communication networks over time, (Bhadra, Ferreira, 2002) consider a set
of static snapshots as a model for evolving graph (evolving graph is one of the names
given to dynamic graphs in the literature). Their model analyzes the communication
between different nodes using static graph properties, such as path length and strongly
connected components, extended to dynamic graphs.

Considering time as an implicit variable of the model, it can be represented through
the events occurring in the graph structure and/or graph attributes. For example,
(J. Jiang, Worboys, 2009) propose a spatio-temporal model to describe changes in
the topological structures of spatial areal objects. The areal objects are represented
as a tree and events represent changes in the tree structure. An event links two con-
secutive trees, occurring at two consecutive time instants, and simple events can be
combined to form a sequence of events representing complex changes.

(Casteigts et al., 2012) proposed a general unifying model of time-varying graphs
(another name for dynamic graphs) considering time as an integral part of the model.
The proposed model enables the representation of a time-varying graph as a sequence
of static snapshots and also, more importantly, as the sequence of “shorter” time-
varying graphs, each representing the temporal subgraph of the whole graph. This
model helps to define the temporal metrics of the time-varying graph (Santoro et al.,
2011).

Furthermore, some interesting work exists related to applications where time is ag-
gregated over an interval and an aggregated graph model is proposed to represent the
spatio-temporal phenomenon. For example, (Costes et al., 2015) propose an aggre-
gated graph to model the changes in the street network over time. The idea of using an
aggregated graph is to avoid the replication of nodes and edges for each time instant
and model the attributes of nodes and edges as time-series over the interval (George,
Shekhar, 2008).

2.3. Graph-based pattern detection

Since our focus in this paper is on graph-based pattern detection, here, we present
some of the existing work in this field.

From a general point of view, graph-based pattern detection is divided into exact
and inexact pattern detection (Conte et al., 2004). The idea of exact pattern detec-
tion is to find the exact mapping between the nodes of two graphs, generally called
pattern graph and target graph. If the objective is to find an injective node mapping be-
tween pattern and target graphs, the problem is referred to as subgraph isomorphism,
whereas if the objective is to find bijective node mapping, the problem is called graph
isomorphism. For clarification, injective node mapping means that all the nodes of
the pattern graph are mapped to at most one node of the target graph. However, it is
possible to have some nodes of the target graph which are not mapped to any node of
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the pattern graph. Bijective node mapping requires, in addition, that all the nodes of
the target graph are also mapped to exactly one node of the pattern graph.

On the other hand, inexact pattern detection is used when exact detection is not
possible or is not fruitful. In this case, the objective is to find the solution which is as
close as possible to the given pattern graph. The “closeness” of the found solution is
defined in terms of the graph edit distance, i.e., the number of edit operations needed
to transform one graph into the other.

In this paper, we will focus only on the problem of exact pattern detection, es-
pecially the case of subgraph isomorphism. This problem has well been studied for
static graphs (Cordella et al., 2004; Bonnici et al., 2013), and recently, the case of
dynamic/time-varying graphs has also seen a growing interest. (Kovanen et al., 2011)
and (Paranjape et al., 2017) propose pattern detection algorithms for dynamic graphs,
while representing them using an aggregated graph model, whose edges are time-
stamped with the times when they are present. The temporal order of the edges is
taken into account by the proposed pattern detection algorithms. Recently, an algo-
rithm for subgraph isomorphism called RI (Bonnici et al., 2013), originally developed
for static graphs, has been extended to the case of dynamic graphs (Micale et al.,
2021). This algorithm also considers the aggregated graph model, with time-stamped
edges, of dynamic graphs.

Taking a similar approach, in our previous work (Oberoi, 2019), we proposed an
algorithm to solve the problem of subgraph isomorphism in case of dynamic pattern
and dynamic target graphs by modeling them as a sequence of static snapshots. The
core of our algorithm was an existing algorithm, called VF3 (Carletti et al., 2018),
developed for the case static pattern and target graphs. VF3 uses a search space mod-
eled as a tree with the possibility of backtracking while searching for suitable node
matchings. We extended the algorithm VF3 to detect dynamic patterns which persist
over time. However, our algorithm did not include the edge labels between different
nodes while searching for graph mappings.

The objective of this paper is to update our definition of subgraph isomorphism for
dynamic graphs to also include edge labels, representing the spatial relations between
the entities of the modeled phenomenon, and modify the implementation of our algo-
rithm accordingly. Although we do not go into details of the algorithm, we report the
results obtained using the new implementation in later sections.

3. General dynamic graph model

Before diving into the specifics of the two applications considered in this paper, we
start our discussion with the formalization of a general dynamic graph model which
would be applied throughout. The field of dynamic graphs is highly inter-disciplinary
due to which, as discussed above, many formalisms have been proposed in the liter-
ature which deal with and model graph dynamics (Holme, Saramäki, 2012; Casteigts
et al., 2012; Wehmuth et al., 2015).
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The choice of the dynamic graph model to be used depends on the characteris-
tics of the phenomenon to be represented. Both handball and urban road traffic are
highly dynamic phenomena in the sense that the structure of the graph representing
these phenomena cannot be known a priori, i.e., the nodes and edges can be added
or removed at any time according to the evolution of these phenomena. In addition,
we could have nodes and edges which persist over time. The dynamic graph model
applied in this paper is inspired from the existing model proposed in (Casteigts et al.,
2012) since it is able to handle these modeling requirements.

Formally, we define a general dynamic graph as

G = (X, E, T , ρX , ρE , ψX , ψE) (1)

where, X and E are sets of nodes and edges, respectively, T is the lifetime, ρX :
X × T → {0, 1} is node presence function, ρE : E × T → {0, 1} is edge presence
function, ψX is node labeling function and ψE is edge labeling function. The presence
function indicates whether a given node (or an edge) is present at a given time and the
labeling function assigns labels to nodes (and edges). The sets X and E contain the
nodes and edges, respectively, which have been present in the graph G at least once
during its lifetime T .

As in case of (Casteigts et al., 2012), our model (theoretically) considers continu-
ous time domain, which implies that graph structure can vary at any time during T . In
addition, it can handle both instantaneous and persisting nodes (and edges) since the
definition of the presence function provides an ambiguity on the time when a node (or
an edge) can be present during T . Hence, this model is suitable for representing highly
dynamic phenomena. However, as proposed by the original authors (Casteigts et al.,
2012), it is possible to represent the dynamic graph as a sequence of static snapshots.
For our purposes, and in the rest of the paper, we use this formalisation of dynamic
graphs.

Given this general dynamic graph model, in the following sections we will focus
on defining the entities and relations between those entities for both handball and
urban road traffic. The set of entities and corresponding relations between them will
define the sets of nodes and edges, X and E respectively, of graph G.

4. Use case: invasive team sports (handball)

Although in this paper we focus on the game of Handball, the proposed graph
formalization can be applied to other invasive team sports as well such as football,
kabaddi, basketball etc.

4.1. Entities constituting handball

An entity of a phenomenon is a “thing” (physical/abstract) which plays a signifi-
cant role in the evolution of that phenomenon (Chen, 1976). Entities may have multi-
ple attributes and some of those attributes could be shared between multiple entities.
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However, it is important to be able to identify each entity using a unique attribute, its
identity (Homsby, Egenhofer, 1997).

In case of team sports, the most significant entity is the Player entity for which
different types of attributes like height, weight, age, games played etc. can be defined.
Each player can have these attributes with different values, and the jersey number of
the player uniquely identifies the players of both teams.

Another significant entity which affects the movement of the players, and in turn
the evolution of the game, is the Ball. Considering ball as a separate entity allows us
to formalize its movement as well as understand the behavior of the players around
the one who possesses the ball. If, on the other hand, the ball is considered as only an
attribute of the player who possesses it, its significance as the trigger which motivates
the coordination of the players to act as functional sub-unit, as noted in (Passos et al.,
2011), gets reduced. Hence, we consider the ball as a separate entity.

Figure 1. Entities constituting the game of handball. Players of attacking (red) and
defending (blue) team as well as the ball possessed by player P11 are shown

Furthermore, different areas on the playing field, categorized as Zone entity, could
be considered as well. In case of handball, we consider two zones - Free Throw (FT)
zone which is the area between the six meter line and free throw line and Nine Meter
(9m) zone which lies beyond the free throw line and extends towards the middle of the
field. The objective behind considering different areas of the playing field as entities
is to be able to locate different players on the field and to understand their movement
during a match. Figure 1 shows the game of handball with the players of both teams
and the ball. The zone demarcation can be deducted using the position of six meter
and free throw lines.

4.2. Relations between entities

Having discussed the three types of entities we consider, now let us describe the
relations between them. These relations highlight the interactions between different
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entities and are necessary to understand the evolution of the game. It is noteworthy
that we only consider binary relations, i.e., those which can be defined between two
distinct entities. Table 1 lists all the relations we consider between different types of
entities.

Table 1. Different relations between the entities of handball

Entity Relation with Relations
Player Player Distance (D), Relative Trajectory (RT )
Player Zone Topological (T )
Player Ball Possession (Po), Pass (Pa)

Depending on the type of entities, we define spatial and/or non-spatial relations
between them. Starting with the Player entity, the most significant spatial relation
which affects the behavior of players during the match is their interpersonal distance
(Passos et al., 2011). The distance (D) between two players can be considered in
precise quantitative terms or can be abstracted into qualitative terms like very close,
close, far, etc. depending on the considered level of detail (Clementini et al., 1997).
Furthermore, since players are moving entities, their movement is described using
their trajectories during a match. To compare the trajectories of two players, Qualita-
tive Trajectory Calculus (QTC) (Weghe et al., 2004) can be applied using which the
relative trajectory (RT) between two players can be compared. This gives further in-
formation about the movement of the players by considering if they move in the same
or opposite directions. Considering the moving objects as points, QTC describes the
relative movement of objects by using symbols like “-” (one object moves towards the
other), “+” (one object moves away from the other) and “0” (no relative movement).
Recently, QTC has been applied to describe the relative movement of football players
(Beernaerts et al., 2020).

Next, we consider the Player and Zone entities. The position of the player on
the field can be described in qualitative terms by defining the spatial topological (T)
relations (Randell et al., 1992) between the player and the zone. The qualitative topo-
logical relations take an abstract point of view to describe the position of the player.
For example, considering the RCC8 formalism proposed in (Randell et al., 1992) for
describing topological relations between two regions, a player can be said to be Exter-
nally Connected (EC), Non-Tangential Proper Part (NTPP) etc. of a zone (FT or 9m)
on the field. In addition to RCC8, other formalisms of topological relations, such as
the one proposed in (Clementini et al., 1993), can also be applied.

Finally, considering the entities Player and Ball, we define two non-spatial re-
lations between them. The first is the possession (Po) relation which describes if a
player possesses the ball. Since it has only two possible values (True or False), it
can be implemented using a Boolean variable. Secondly, we define Pass (Pa) relation
which describes a ball pass between two players. This relation can be implemented
using a tuple < From, To > which contains the identity of both players involved in
the pass. For example, a ball passed between players P1 and P2 can be represented
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as < P1, P2 > and added in the graph as an edge label between nodes Ball and P1
as well as nodes Ball and P2.

4.3. Sets of nodes and edges

Given the semantics behind the entities and their corresponding relations in case
of handball, the set of nodes X and set of edges E in equation 1 (Section 3) can be
formalized. Considering the set P of players, the ball B and the set Z of zones, the
set of nodes is written as

X = P ∪ Z ∪B (2)

In handball, there are seven players (six field players and one goal keeper) in each
team. In addition, we consider two zones (FT and 9m) and one Ball, which makes the
total number of nodes in the graph to be |X| = 17.

Furthermore, the set of all possible relations considered between the three types of
entities (Table 1) is

∆ = {D, RT, T, Po, Pa} (3)

with each element Γ of ∆ being a set of its possible values (like D = {close, far}).

With this, the set E of edges can be written as

E = {(x, y) | x γ y}, γ ∈ Γ, Γ ∈ ∆,∀ x, x ∈ P ∧ ∀ y, y ∈ X (4)

which means that an edge is allowed to exist between a player and any other entity
type and not between the ball and the zone. Here, γ represents the value of the element
Γ present in set ∆ of all possible relations. For example, γ could represent the value
close of Distance (D) relation. It is assumed that ρX(x) = 1 and ρX(y) = 1, i. e., the
corresponding nodes are present in the graph at the time when the edge is added.

4.4. Spatio-temporal patterns in handball

Having clarified the entities in handball as well as different types of relations be-
tween those entities, in this section, we will present different kinds of spatio-temporal
patterns which can be defined for handball. These patterns represent the tactics which
the players of the attacking team develop during their training. Depending on the
temporal granularity considered, the patterns described can be further detailed with
intermediate game situations. However, we restrict ourselves to three timestamps.

4.4.1. Cross pass between players

A common tactic of the attacking team for passing the ball between players is
cross passing. A representation of cross pass is shown in Figure 2. The idea of cross
pass is to confuse the defending team and pass the ball in the opposite direction of the
player movement. In Figure 2, at time t1, player P4 possesses the ball and is moving
towards player P5 who is also moving towards player P4. Their relative trajectories
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Figure 2. A representation of cross pass between players of the attacking team. All
nodes and all relations are not shown due to space constraints. The Ball node is

shown in green in the graph

are shown using QTC relation “- -” in the corresponding graph. At time t2, player P5
is stationary and the player P4 moves towards P5, as represented by QTC relation
“- 0”, the ball is passed to player P5. The Pass relation is shown using the tuple
< P4, P5 > in the graph at time t2. Player P4 continues his/her movement and at
time t3, player P5 is left with the ball. Then, depending on the situation, player P5
can either pass the ball to another player or try to take a shot.

4.4.2. Position switch between players

Since the handball is a highly dynamic game, one tactic to confuse the defending
team is to pass the ball to one player and then switch the position on the field with
another player who will take the shot. Since this happens very rapidly, it is difficult
to cover the player who will take the shot. A representation of this tactic is shown in
Figure 3. In the figure, player P5 has the ball at time t1 and players P1 and P2 of the
defending team try to cover this player. The notion of “covering” the player P5 by the
players P1 and P2 is represented with the presence of the edge (P1, P2) at time t1. It
can be further detailed by considering the Distance relation close between P1 and P2.
At time t2, player P5 starts moving towards player P6, passes the ball to player P6
and switches his/her position with player P4 at time t3. The position switch becomes
evident by the presence of edges (P1, P5) and (P2, P4) at time t3 which were not
present at time t2. Then player P4 can try to move past the defending players and try
to take a shot. Different relations between entities of the game are shown in the figure
as well.
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Figure 3. A representation of position switch between players of the attacking team.
All nodes and all relations are not shown due to space constraints. The Ball node is

shown in green in the graph

5. Use case: urban road traffic

Another ST phenomenon we consider in this paper is the urban road traffic. In our
previous work (Oberoi, 2019), we proposed a dynamic graph model to represent urban
road traffic and applied it to define structural traffic patterns, i.e., graph patterns with-
out considering relations between different entities of road traffic. In this section, we
will enhance the definition of those patterns by considering different types of relations
between various entities of road traffic. As in the previous section, we will start with
the definition of the entities which make up road traffic and list various relations be-
tween those entities. Then we will discuss some examples of spatio-temporal patterns
in urban road traffic defined in terms of those entities and corresponding relations.

5.1. Entities constituting urban road traffic

Figure 4 shows different entities of urban road traffic at an intersection. As in case
of handball, we consider various types of entities for urban road traffic. In our model,
most significant entities which make up the road traffic are dynamic entities such as
vehicles, pedestrians, and bicycles since our objective is to study their behaviour and
their movement and understand the resulting ST evolution of traffic. In addition, there
are other static entities which directly affect the flow of traffic. We consider various
static entities like buildings, vertical structures (such as sign boards, traffic signals,
lane dividers, guard rails etc.), road markings (such as stop line, zebra crossing, center
line etc.), road sides (like footpath, cycle track, roadside parking etc.), road segments,
and intersections in our model.
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Figure 4. Entities constituting urban road traffic. The entities shown are Vehicles
(V ), Pedestrians (P ), Buildings (B), Vertical structures (V S), Road Markings (M ),

Road Segments (R), Road Sides (F ), and Intersection (I)

5.2. Relations between entities

Having described which real-world objects form the set of entities in our model,
let us now discuss various spatial relations we consider between these entities. Table
2 lists spatial relations between different entity types considered in our model.

We distinguish between vehicle-centric relations and non-vehicle-centric relations.
Vehicle-centric relations are defined between a vehicle and any other entity. Between
Vehicle-Vehicle, Vehicle-Pedestrian and Vehicle-Bicycle entities, we consider Topo-
logical (T ), Orientation (O), Relative Trajectory (RT ), Relative Speed (RS), and
Distance (D) relations. Topological relation describes if two vehicles (or pedestri-
ans/bicycles) touch each other (for example, in case of any accidents). Orientation
relation describes relative orientation such as front, left, left-front etc. (Hernández,
1993) between these entities. Relative Speed and Relative Trajectory, defined using
QTC (Weghe et al., 2004), describe if a vehicle/pedestrian/bicycle is moving faster
or slower than another vehicle/pedestrian/bicycle and their relative direction of move-
ment, respectively. Distance relation describes the qualitative distance between two
entities. Similarly for Vehicle-Building and Vehicle-Vertical Structure, we consider
Topological, Orientation and Distance relations. In case of Vehicle-Road Marking
and Vehicle-Road Segment, only Topological relation is considered to highlight if a
vehicle covers or touches a road marking.

Furthermore, non-vehicle-centric relations between entities such as Pedestrian,
Roadside, Bicycle, Road Segments and Road Markings are considered to add com-
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Table 2. Spatial relations between different entities of urban road traffic

Entity Relation with Relations
Vehicle Vehicle {T, O, RT, RS, D}
Vehicle Building {T, O, D}
Vehicle Vertical Structure {T, O, D}
Vehicle Road Marking {T}
Vehicle Roadside {T, D}
Vehicle Road Segment {T}
Vehicle Pedestrian {T, O, RT, RS, D}
Vehicle Bicycle {T, O, RT, RS, D}
Vehicle Intersection {T, D}
Pedestrian Roadside {T}
Bicycle Roadside {T}
Pedestrian Road Segment {T}
Bicycle Road Segment {T}
Pedestrian Road Marking {T}
Bicycle Road Marking {T}
Road Segment Road Marking {T}

plementary information about the spatial interactions between them. For these enti-
ties, we consider only Topological relation to describe if a pedestrian/bicycle is on the
road segment or on the road side and which road marking is present on which road
segment.

5.3. Set of nodes and edges

With the information about various entities of road traffic and corresponding spa-
tial relations between, we can formalize the sets of nodes and edges in equation 1
(Section 3) for this phenomenon. Given set of Vehicles (V ), set of Buildings (B), set
of Vertical Structures (V S), set of Road Marking (M ), set of Roadsides (F ), set of
Road Segments (R), set of Pedestrians (P ), set of Bicycles (H) and set of Intersections
(I), we formalize the set of nodes

X = V ∪ B ∪ V S ∪ M ∪ F ∪ R ∪ P ∪ H ∪ I (5)

Furthermore, set of all possible relations between the entities of urban road traffic
can be written as

∆ = {T, O, RT, RS, D} (6)
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As in case of handball, the set of edges in the graph representing road traffic is for-
malized as

E = {(x, y) | x γ y}, γ ∈ Γ, Γ ∈ ∆,∀ x, y | (x ∈ V ∧ y ∈ X)

∨ (x ∈ P ∪H ∧ y ∈ F ∪R ∪M) ∨ (x ∈ R ∧ y ∈M) (7)

which means that an edge can exist between a Vehicle and any other entity, between
a pedestrian/bicycle and roadside/road segment/road marking, or between a road seg-
ment and a road marking. It is assumed that the corresponding nodes between which
an edge is added are present in the graph at a given time.

5.4. Spatio-temporal patterns in urban road traffic

Similar to handball, we use the graph model of urban road traffic to define spatio-
temporal traffic patterns in this section. These patterns represent the movement of
dynamic entities with respect to other dynamic and static entities over time. The pat-
terns described in this section can be refined depending on the level of detail required.

Figure 5. A representation of the movement of a vehicle V 1 over an intersection I
and turning left

5.4.1. Vehicle crossing an intersection

One of the basic movement behaviour of vehicles is crossing an intersection and
turning left or right or going straight. This behaviour is shown using the proposed
graph model in Figure 5. At time t1, the vehicle V 1 is moving on road segment R4
towards the intersection I . The corresponding topological relation (Non-tangential
proper part (NTPP) in RCC8 formalism (Randell et al., 1992)) between the vehicle and
the road segment is shown. At time t2, the vehicle enters the intersection and partially
overlaps (PO, defined in RCC8) both the intersection and the road segment. The
vehicle continues moving, turns left towards road segment R3 at times t3, t4, and t5,
and its spatial relations with different static entities keep evolving with its movement.
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As mentioned before, we are not limited to RCC8 to describe the topological relations
and other approaches such as (Clementini et al., 1993) can also be used.

5.4.2. Pedestrian crossing a road segment as the vehicle approaches

Considering the movement of another important dynamic entity (Pedestrian), a
traffic pattern is shown in Figure 6. In this case, the pedestrian P1 is crossing the road
segment R1 while the vehicle is moving towards him/her. At time t1, the pedestrian
is on the road side F1 and on the left (orientation relation) of vehicle V 1. At time t2,
the spatial relation between the vehicle and pedestrian has changed since the pedes-
trian has moved and is about to start crossing the road. However, the graph structure
remains the same. At time t3, the pedestrian has come in front of the vehicle, on the
road segment and on the road marking (zebra crossing) and the corresponding spatial
relations are updated. This type of pattern can also be used to detect dangerous sit-
uations, like if the pedestrian crosses the road without using the zebra crossing, the
corresponding edge between nodes P1 and M1 will not be there in the graph at time
t3. The absence of this edge indicates a dangerous traffic situation.

Figure 6. A representation of the movement of a pedestrian P1 crossing a road
segment R1 while vehicle V 1 is approaching

6. Spatio-temporal pattern detection in spatio-temporal graphs

In previous sections, we described the graph models to represent highly dynamic
spatio-temporal phenomena - handball and urban road traffic. Then we used the
same formalization to define certain graph-based spatio-temporal patterns which can
be detected in both these phenomena. In this section, we will formalize the prob-
lem of detecting such spatio-temporal patterns, in the graph representing the phe-
nomenon (called target graph), as the problem of subgraph isomorphism (SI) for dy-
namic graphs. We extend our previous definition of the problem (Oberoi, Del Mondo,
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2021) to include the edge labels in both pattern and target graphs. After mathemat-
ically defining the problem of SI for static and dynamic graphs, we will report the
results obtained using our algorithm, proposed in (Oberoi, 2019), on random dynamic
graphs having varying edge labels (relations). Since we do not yet have the real data
for any of the phenomena discussed above, testing our approach using random graphs
is our only option since we can vary the graph paramaters, such as number of nodes,
number of snapshots and the distribution of edge labels, for both pattern and target
graphs, in order to test the performance of our algorithm.

6.1. Problem formulation

6.1.1. SI for static graphs

We start by defining the problem of SI in case of static graphs. Consider a static
graph G = (X,E, ψX , ψE) with a set of nodes X , set of edges E ⊂ X × X
and node and edge labeling functions ψX and ψE , respectively. Given a pair of
static pattern graph H = (XH , EH , ψX(H), ψE(H)) and static target graph G =
(XG, EG, ψX(G), ψE(G)), the problem of SI is to find an injective mapping µ be-
tween the nodes of the two graphs. Mathematically, µ ⊂ XH ×XG represents a set
of pairs of mapped nodes of pattern and target graphs. Following equations give the
formal definition of the problem.

∀u ∈ XH ,∃ v ∈ XG | (u, v) ∈ µ (8)

∀u, u′ ∈ XH , u 6= u′ | {(u, v), (u′, v′)} ∈ µ⇔ v 6= v′ (9)

∀(u, u′) ∈ EH ,∃ (v, v′) ∈ EG | {(u, v), (u′, v′)} ∈ µ (10)

∀u, u′ ∈ XH ,∀(v, v′) ∈ EG | {(u, v), (u′, v′)} ∈ µ⇔ (u, u′) ∈ EH (11)

Equations 8 and 9 state that all distinct nodes of the H must be mapped to some
(but distinct) nodes of G. Equation 10 states that all edges of H are mapped to some
edges of G given that the corresponding nodes of the two graphs are mapped as well.
Lastly, Equation 11 verifies the “induced” version of SI by checking that a mapped
edge of G has a corresponding edge in H . In addition, using the labeling functions
ψX and ψE , we can add additional constraints to check that the mapped nodes and
edges have same labels, as follows:

∀u ∈ XH , (u, v) ∈ µ, v ∈ XG ⇒ ψX(H)(u) = ψX(G)(v) (12)

∀u, u′ ∈ XH , {(u, v), (u′, v′)} ∈ µ, v, v′ ∈ XG ⇒ ψE(H)(u, u
′) = ψE(G)(v, v

′)
(13)

If all conditions mentioned above are satisfied, we represent SI between graphs H
and G as µ : H ↪→ G. Otherwise, we use the notation H 6↪→ G.
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6.1.2. Extending SI to dynamic graphs

In Section 3, we defined a dynamic graph as G = (X, E, T , ρX , ρE , ψX , ψE).
Simplifying the model by not explicitly considering the presence functions, we can
define a dynamic pattern graph asH = (XH, EH, TH, ψX(H), ψE(H)) and a dynamic
target graph as G = (XG , EG , TG , ψX(G), ψE(G)). We consider a snapshot-based
model for both dynamic pattern and target graphs where H = {H1, H2, ..., Hm}
has m snapshots and G = {G1, G2, ..., Gn} has n snapshots, with m ≤ n. Then the
problem of SI can be extended to dynamic graphs, i.e.,

– Each snapshot of H must be mapped to some snapshot of G while respecting
the equations of induced SI mentioned above. Formally,

∀Hi ∈ H, 1 ≤ i ≤ m ∃ µij : Hi ↪→ Gj | Gj ∈ G, 1 ≤ j ≤ n (14)

where, µij represents the mapping between snapshots Hi ∈ H and Gj ∈ G.
– The temporal order of H and G must be respected, i.e., if a snapshot Hi, 1 ≤

i ≤ m ofH is mapped to a snapshot Gj , 1 ≤ j ≤ n of G, then the next snapshot Hi+1

ofH must be mapped to some snapshot Gf of G where f > j. Formally,

∀Hi ∈ H, 1 ≤ i ≤ m, µij : Hi ↪→ Gj , Gj ∈ G, 1 ≤ j ≤ n⇔

∃ µ(i+1)f : Hi+1 ↪→ Gf | Gf ∈ G, j < f ≤ n (15)

– It is possible to have some snapshots of G to which no snapshots of H are
matched. Such snapshots represent noise. We include such snapshots of target graph
to be more realistic in terms of the sampling rate. For real-world applications, depend-
ing on this sampling rate, it is possible to have some snapshots in which no matching
is found. Formally,

∃ Gj ∈ G, 1 ≤ j ≤ n | Hi 6↪→ Gj , Hi ∈ H, 1 ≤ i ≤ m (16)

6.2. Experiments and results

Having mathematically formalized the problem of SI for dynamic graphs, in this
section we report the results of the experiments we conducted using our algorithm,
first proposed in (Oberoi, 2019), to detect dynamic patterns in dynamic graphs. The
details of the algorithm are out of scope of this paper. In our previous work (Oberoi,
Del Mondo, 2021), we reported the results of the average algorithm runtime con-
sidering only structural graph properties such as number of nodes, number of graph
snapshots, graph density and number of node labels. In this paper, since we extended
the definition of subgraph isomorphism to include relations as edge labels in both pat-
tern and target graphs, we conducted experiments to see the effect of the distribution
of such edge labels on the average algorithm runtime.

All the experiments were conducted on a PC with Intel Core-i7 3.6GHz CPU and
32GB RAM running Ubuntu 18.04 LTS. Our algorithm is implemented in C++ and
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was compiled with GNU C++ compiler (version 7.5.0) with level-3 optimisation. For
each experiment, we considered the timeout of 10 mins. If the execution of the al-
gorithm terminated before timeout, we report the value of average algorithm runtime
(in seconds), otherwise we report the result as NULL. It is noteworthy that for all the
experiments we do not consider any node labels (so all nodes are semantically equal)
and only consider the edge labels.

We conducted the experiments considering different scenarios using random dy-
namic graphs. Firstly, we consider that all the relations on all the edges of both dy-
namic pattern and dynamic target graphs are the same. This is not a real scenario but
it helps to understand the limits of our algorithm. The results for this experiment are
reported in Table 3. One can see that none of the experiments in this scenario return
any result before timeout. This shows that having same value of edge labels for each
edge in both graphs drastically affects the performance of the algorithm since there
are multiple solutions/matchings possible but it takes too long to find them. Hence,
the types of edge labels considered should be carefully examined when applying this
approach to real graphs.

Table 3. Average algorithm runtime considering same edge labels (relations) for all
edges in both dynamic pattern and dynamic target graphs. NULL values mean that

the algorithm did not terminate before timeout of 10 mins

Target Graph Pattern Graph Avg. Time (in secs)Nodes No. of snapshots Nodes No. of snapshots

50 50

10 10 NULL
10 30 NULL
50 10 NULL
50 30 NULL

100 50

10 10 NULL
10 30 NULL
50 10 NULL
50 30 NULL

For the next set of experiments, we consider that the all the edges of the pattern
graph have the same edge labels, whereas the edges of the target graph have uniformly
distributed edge labels. The results for this experiment are reported in Table 4. Finally,
for the last set of experiments, we considered that the edge labels for both dynamic
pattern and dynamic target graphs are uniformly distributed (Table 5). For both these
sets of experiments, we see similar results since for both these experiments we find
zero matchings between the pattern and target graph pairs. This is due to the fact that
the edge labels are taken into account while calculating the matchings and since they
are not same between pattern and target graphs, we do not get any matching.

The results described in this paper, combined with the results in our previous work
(Oberoi, Del Mondo, 2021), give comprehensive details about the algorithm perfor-
mance depending on both structural and semantic properties of dynamic pattern and
target graphs. These results form a baseline for implementing our algorithm with real
spatio-temporal graphs in the future.
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Table 4. Average algorithm runtime considering same edge labels (relations) for the
dynamic pattern graph and uniformly distributed edge labels for the dynamic target

graph

Target Graph Pattern Graph Avg. Time (in secs)Nodes No. of snapshots Nodes No. of snapshots

50 50

10 10 0.0128
10 30 0.0065
50 10 0.0057
50 30 0.0038

100 50

10 10 0.0639
10 30 0.0341
50 10 0.0579
50 30 0.0289

Table 5. Average algorithm runtime considering uniformly distributed edge labels
(relations) for both dynamic pattern and dynamic target graphs

Target Graph Pattern Graph Avg. Time (in secs)Nodes No. of snapshots Nodes No. of snapshots

50 50

10 10 0.0122
10 30 0.0063
50 10 0.0058
50 30 0.0038

100 50

10 10 0.0651
10 30 0.0340
50 10 0.0606
50 30 0.0282

7. Conclusion and future work

In this paper, we discussed the idea of using spatio-temporal graphs to model
spatio-temporal phenomena. Considering two distinct, highly dynamic phenomena
- invasive team sports (focusing on handball) and urban road traffic, we highlighted
the entities and spatial relations between those entities for both phenomena. A generic
dynamic graph model is proposed which is applicable to model both invasive team
sports and urban road traffic.

The reason behind using a graph-based model to represent a spatio-temporal phe-
nomenon is the existing plethora of graph algorithms and analysis tools which can be
directly applied to analyze the phenomenon. In this paper, we focus on pattern detec-
tion as an approach for analyzing the evolving behaviour of various entities and their
corresponding spatial interactions. In case of handball, the spatio-temporal patterns
represent the tactics which the players of the attacking team develop during train-
ing, whereas, in case of urban road traffic, such spatio-temporal patterns represent
the movement of different dynamic entities such as vehicles and pedestrians. Once
such graph-based patterns are defined, they can be detected in the phenomenon. We
formalize the problem of pattern detection as the problem of subgraph isomorphism
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for dynamic graphs, and we discuss the results of our algorithm for detecting spatio-
temporal patterns in spatio-temporal graph representing the phenomenon. The ideas
explored in this paper are applicable to other types of spatio-temporal phenomena as
well.

In the future, our objective is to apply our algorithm for pattern detection on real
data about invasive team sports and urban road traffic. For handball, we have generated
a spatio-temporal graph using a single video sequence of a game between France and
Czech-Republic and are currently in the process of detecting spatio-temporal patterns.
For urban road traffic, we plan to use a traffic simulator like CARLA (Dosovitskiy et
al., 2017) to generate the corresponding spatio-temporal graph.
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