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Abstract
Task scheduling is one of the major problems with Internet of Things (IoT) cloud computing. 
The need for cloud storage has skyrocketed due to recent advancements in IoT-based 
technology. Sophisticated planning approaches are needed to load the IoT services onto 
cloud resources professionally while meeting application necessities. This is significant 
because, in order to optimise resource utilisation and reduce waiting times, several 
procedures must be properly configured on various virtual machines. Because of the 
diverse nature of IoT, scheduling various IoT application activities in a cloud-based 
computing architecture can be challenging. Fog cloud computing is projected for the 
integration of fog besides cloud networks to address these expectations, given the 
proliferation of IoT sensors and the requirement for fast and dependable information 
access. Given the complexity of job scheduling, it can be difficult to determine the best 
course of action, particularly for big data systems. The behaviour of zebras in the wild 
serves as the primary basis of stimulus for the development of the Zebra Optimisation 
Algorithm (ZOA), a novel bio-inspired metaheuristic procedure presented in this study. ZOA 
mimics zebras' feeding habits and their defence mechanisms against predators. Various 
activities are analysed and processed using an optimised scheduling model based on ZOA to 
minimise energy expenditures and end-to-end delay. To reduce makespan and increase 
resource consumption, the technique uses a multi-objective strategy. By using a regional 
exploratory search strategy, the optimisation algorithm may better utilise data and stays 
out of local optimisation ruts. The analysis revealed that the suggested ZOA outperformed 
other well-known algorithms. It was advantageous for big data task scheduling scenarios 
since it converged more quickly than other techniques. It also produced improvements of 
18.43% in several outcomes, including resource utilisation, energy consumption, and make 
span.
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1. Introduction

1.1 Background of big data applications

Tools, technologies, and architectures with increased efficiency, 
flexibility, and resilience have emerged as a result of the Big 
Data age. Complex architectures with built-in scalability and 
optimisation capabilities are necessary for big data applications. 
The environments in which big data applications are deployed 
must be updated and upgraded on a regular maximise their 
scalability and flexibility [1]. Cloud-based services are being 
used by organisations to improve performance and reduce 
overall costs. Because it is lightweight, containerisation, a cloud-
based technology, is becoming more and more popular. One of 
the most popular and widely used container-based 
virtualizations is Docker, which is an open-source project that 
makes it easy to create, operate, and deploy applications [2].

Big data applications require large-scale environments and 
resources in order to store, process, and analyze this massive 
amount of data in a distributed manner. Huge data needs can 
be effectively addressed by cloud computing and 
containerization, but accurate and appropriate load balancing is 
required [3]. Load balancing is crucial because the strain on 
servers grows exponentially as resource use rises. Furthermore, 
one of the key components of big data applications is the 
precise and quick modification of containers based on services 

and load.

With rising demands and use, optimising an application's 
performance is a constant battle. The goal of technological 
advancements is always to achieve greater levels of 
performance and efficiency. All organisations must use an 
environment that provides fault tolerance, performance, and 
dependability [4]. When it comes to providing performance, 
resilience, availability, and an affordable solution, cloud 
computing has carved out a place for itself. Cloud computing is 
being used by modern technologies to their advantage since it 
makes resources widely available in an efficient and 
professional way [5]. The end user now gets access to resources 
including software, platforms, and infrastructure without 
requiring any administration work thanks to the Cloud. 
Everything is available as a service on the cloud, including 
cutting-edge innovations like big data and the (IoT). As seen in 
Elhoseny et al. [6], several companies are providing cloud-based 
solutions for managing Big Data. Scaling the amount of physical 
resources is how elasticity is done in a multi-tiered cloud 
system. There are two methods for scaling resources: vertical 
scaling, which involves adding additional resources to the 
deployed virtual machines, or horizontal scaling, which involves 
adding more virtual machines [7]. Both approaches have more 
steps, have latency problems, and might be more expensive. 
Several paradigms and architectures have been researched and 
assessed in an effort to speed up procedures and optimise 
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application development costs.

Data mining can quickly convert vast amounts of data into 
knowledge and ultimately value by using pertinent algorithms 
to process the data and uncover hidden important information 
[8]. Unfortunately, due to the present rapid growth of data 
volumes, classic techniques based on single-node serial mining 
are no longer appropriate for handling large amounts of data. 
Cloud computing, as a distributed platform, may integrate 
numerous computer resources and significantly boost 
technological capabilities. Compared to standard algorithms, it 
works better for processing large amounts of data [9]. 
Furthermore, conventional PCs may computing, which lowers 
the complexity and expense of cloud platform creation to some 
level [10]. Cloud computing models and platforms also do not 
have strict criteria for network nodes.

With a computing paradigm that is integrated from the 
advancement of traditional computers and technical networks, 
cloud computing has drawn more attention in recent years [11]. 
Cloud computing's distributed storage, virtualization, and 
parallel computing technologies provide fresh approaches to 
building computer platforms for monitoring the state of data 
centres' electrical equipment. Electric power companies' current 
basic computing facilities may be integrated to offer strong, 
dependable storage and processing capacity support, which is 
helpful for monitoring online power equipment over an 
extended period of time [12].

Monitoring and data gathering enhance the capacity for 
intelligent diagnostics and real-time analysis. Many high-
reliability platforms, like Hadoop, Spark, and Storm, have 
developed with the fast growth of cloud computing technology, 
offering advantageous tools for the centralised processing of 
massive amounts of power equipment nursing data [13]. How 
can these developing computing models be integrated into the 
power equipment monitoring center's data processing, even if 
they all provide a single programming interface and hide more 
intricate features than conventional parallel computing 
programming models? It is still worthwhile to do research on 
the topic of combining distinct professional backgrounds to 
address real-world issues and various high-level applications in 
the monitoring system [14].

Currently, real-time traffic data analysis, weather data analysis, 
and medical data storage are three areas where cloud 
computing technology is making significant progress. Cloud 
computing is inexpensive, and the machines in the cluster setup 
don't need to meet any complex specifications. Integration with 
conventional data mining techniques can enable more effective 
administration and analysis of power monitoring data thanks to 
cloud computing's enormous scale and quick computation 
speed. In conclusion, because of its capacity to delve deeper 
into the shifting law of the load curve and successfully identify 
years [15].

1.2 Issues on energy consumption

The majority of monitoring systems were created for specific 
types of equipment in the early stages of condition monitoring 
technology development, and each scheme was dispersed and 
isolated. This was an info island where there was no data 
exchange or interaction, making it difficult to manage and 
thoroughly analyse monitoring data. Furthermore, it is 
challenging to share the hardware network, computer power, 
and storage—of various monitoring systems, which wastes IT 
resources. As a result, an integrated management system that 
was constructed in the main control room has surfaced and is 
capable of processing different monitoring data that are 
gathered by various monitoring devices centrally [16]. The 

monitoring device's present limitations, however, are that it can 
only transfer the streamlined, monitoring centre, and the 
frequency of data gathering is low. As a result, the monitoring 
centre will eventually gather an incredible quantity of data, and 
the information processing capacity of the current monitoring 
system will not be able to handle the demands of processing 
and storing such a large amount of data. It is clear that the 
serial processing approach has long been inadequate to handle 
the demands of processing massive volumes of data. Various 
computing challenges faced in scientific research and 
engineering practice have historically been attributed to the 
typical parallel computing paradigm based on high-
performance processors.

As a result, the monitoring device processes expert data locally 
and feeds it to the present monitoring system. Before being 
uploaded, the monitoring device, for instance, has to analyse 
the partial discharge waveform data from high-voltage electrical 
equipment into the sum of discharges, matching discharge 
phase [17]. Uploading "familiar data" rather than "raw data" can 
save money on storage at monitoring centres and network 
transmission expenses. Even yet, a monitoring centre that 
combines data from several monitoring device specifications 
still has a difficult time diagnosing target device failure and 
doing a thorough condition assessment.

1.3 Issues on resource allocation
Various formulations of the resource allocation problem (RAP) 
have been suggested in line with various issue scenarios; the 
RAP may describe all real-world circumstances. Internet of 
Things (IoT) resource allocation problems (RAPs) are large-scale 
and multi-faceted, and deterministic algorithms are unable to 
solve them because they are nondeterministic polynomial (NP)-
complete. While genetic algorithms (GA) and other NP 
algorithms have been researched for their ability to identify 
near-optimal solutions, they have a propensity to generate a 
significant number of infeasible keys while searching [18]. Due 
to GA's shortcomings, a particle swarm optimisation (PSO) 
metaheuristic clustering method was suggested for nonlinear 
MORAP. This method aims to find the Pareto-optimal keys, 
which are solutions that are not overshadowed by other 
solutions; in other words, solutions that improve one 
preference criterion without compromising another. To tackle 
scheduling challenges, a Pareto optimum solution based on 
time is employed to convert decisions. The suggested Pareto 
optimisation methods have proven to be effective in producing 
optimal solutions. There is an urgent need to optimise energy 
usage in order to extend the lifespan of the network, as the 
Internet of Things (IoT) is primarily used for environmental 
monitoring, data collecting, and processing. Due to their limited 
battery life, sensor and actuator nodes in the Internet of Things 
(IoT) may be prematurely destroyed if their resources are not 
used efficiently [19]. As a result, EC paradigms that revolve 
around edge nodes have grown in popularity as a way to 
address IoT's MORAP. This change in strategy has prompted a 
lot of research on RA as a way to handle traffic pressure and the 
difficulties of IoT and cloud computing. Scheduling service 
resources, guaranteeing quality of service (QoS), and merging 
multiple services are some of the well-established issues that 
come with the edge computing paradigm, which is related to 
cloud computing [20].

Research on the potential uses of big data technologies based 
on cloud computing in the electricity sector is now in its early 
stages. When it comes to online monitoring data, the majority 
of cloud computing systems now used by monitoring centres 
rely on a single Hadoop architecture, which has its limits when it 
comes to storing data prior to centralised processing and 
causes processing delays that are too lengthy [21]. Streamlining 
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data processing to better meet the flow of data is the way of the 
future. The most prevalent approach involves using a database 
management which might not be compatible with earlier 
systems, and there hasn't been a complete and efficient 
solution that addresses velocity, volume, and diversity yet. The 
issue of real-time anomaly detection and the need for quick 
processing of monitoring data are gaining prominence [22]. 
Even while cloud computing's entry into the power sector is very 
significant from a research standpoint, the industry's use of the 
technology is still in its early stages, and further investigation is 
required before it can be integrated into power generation. 
Although cloud computing has garnered a lot of interest due to 
its great speed, no research has yet examined how to use it for 
processing massive amounts of data in real-time [23]. Smart city 
or digital twin city development with VR capabilities may be 
accelerated with the help of data management and multisource 
access technologies, which also offer robust support for 
intelligent on a city-scale [24]. Due to the complex process of 
the integrated prediction model and meeting in real-time for 
intelligent power schemes, the processes have often become 
more challenging for single computing resources to handle.

Implementing communication protocols to plan data transfer is 
an excellent method to reduce or eliminate data collision 
altogether [25]. When it comes to multitasking, the simplest and 
oldest scheduling protocol or algorithm is the round robin (RR) 
static algorithm. It provides for the equitable distribution of 
time slots across resources and servers. The cyclic queue, which 
is constrained by a time slice, also called quantum time, 
performs each job in turn. A real-time pre-emptive method, 
round robin controls a node's access at each transmission 
instance according to a specified circular sequence and reacts to 
real-time occurrences. On the other side, resource-based (RB) 
algorithms prioritise the allocation of resources from highest to 
lowest using a greedy approach and a heuristic technique. So, 
to maximise throughput while minimising power consumption, 
it repeatedly chooses the most demanding request or job and 
assigns it to a suitable and available server for processing [26]. 
For diverse requests and jobs, the RB dynamic algorithm works 
well by looking at resource performance records over time to 
determine which one is the best fit, which improves 
performance overall.

1.4 Contribution of the research work
The research presented here pertains to load-balancing large 
data applications running in containerised systems such as 
Docker. Based on the Docker Swarm and ZOA architecture, this 
paper proposes a container scheduling technique for large data 
applications. This article explains how to manage the workload 
and service discovery of large data applications using the 
Docker Swarm concept. In order to decrease energy costs and 
end-to-end latency, various activities are evaluated and 
processed using an efficient scheduling model. To improve the 
optimisation algorithm's data utilisation and prevent it from 
being mired in local optimisation, a regional exploratory search 
method is employed..

1.5 Organization of the Work

Section 1: Includes the background of big data, issues of energy 
consumption, introduction of resource allocation problem and 
contribution of the research work.

Section 2: The review of existing techniques and its issues are 
mentioned.

Section 3: The motivation of the proposed model with resource 
allocation problem is given.

Section 4: The brief explanation of the proposed model is 

detailed.

Section 5: The requirement of system model and its explanation 
is mentioned

Section 6: The result analysis and its graphical discussion are 
provided.

Section 7: The final contribution of the projected model is given 
with its future direction.

2. Related works
Foreseeing data stream frequency changes allows Sun et al. [21] 
to make adjustments to the grouping method based on 
prediction findings from a deep reinforcement learning model. 
In addition to efficiently managing resources, this will allow the 
system to swiftly adjust to fluctuations in data streams. This 1) 
Identify the primary causes of load skewness in distributed 
stream join systems and describe the application-level load 
balancing problem thoroughly. 2) Construct a Gated Recurrent 
Unit Sequence to Sequence model for forecasting the 
distribution of key frequencies in streams; for real-time 
resolution of the load imbalance issue caused by hot keys, 
provide a dynamic grouping approach and a feedback-based 
resource elasticity scaling mechanism. 3) Using the prediction 
model and the technique that was suggested, create an 
adaptive stream join system called Aj-Stream on Apache Storm. 
4). Conduct comprehensive tests on a large-scale real-world 
dataset as well as several synthetic datasets to assess the 
system's performance. Experiments with static and dynamic 
data streams of different skewnesses show that the Aj-Stream 
suggested in this article maintains consistent latency and 
throughput. Aj-Stream showed a 22.1% improvement in system 
throughput and a 45.5% reduction in scheme latency while 
handling data streams that fluctuate regularly, in contrast to 
current stream-connected systems.

In order to solve this problem, Sharma et al. [22] suggested two 
algorithms: dynamic SDN (dSDN) and priority scheduling and 
congestion management (eSDN). Nevertheless, the rate of 
expansion of the (IoT) is uncertain and may even be exponential 
in the future. In order to keep up with this trend, key to manage 
the increasing intricacy of diverse devices and keep network 
latency to a minimum. As a result, we offer temporal deep Q 
learning for the dSDN controller in this article, which is an 
extension of our earlier work. An example of a self-learning 
reinforcement-based model is a tDQN, or Temporal Deep Q-
learning Network. The tDQN agent iteratively learns to reduce 
network latency by improving decision-making for switch-
controller mapping using a reward-punish mechanism. We have 
developed a method called tDQN that optimises latency and 
dynamic flow mapping without controllers in the best locations. 
In order to dynamically redirect traffic to the most appropriate 
controller, a multi-objective optimisation problem is developed 
for flow fluctuation. The tDQN achieves better throughput, loss 
than conventional networks, eSDNs, and dSDNs, according to 
comprehensive simulation findings that account for different 
network circumstances and traffic.

Beginning with virtualization and distributed cloud computing, 
Zhu [23] lays out the idea and process for implementing load 
balancing and suggests a better genetic load balancing 
algorithm. As meta-heuristic algorithms, traditional genetic 
algorithms might suffer from sluggish convergence. For our 
simulations, we relied on the free and open-source Cloudsim 
cloud simulation tool. When tested in a cloud computing 
environment, the results prove that the enhanced evolutionary 
algorithm outperforms the conventional one in terms of 
adaptability to load balancing needs and efficiency in resource 
utilisation.
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A method for scheduling tasks based on optimisation was 
presented by Chandrashekhar et al. [24]. When allocating 
resources in the Internet of Things (IoT), the Multi-Objective 
Prairie Dog Optimisation (MOPDO) method takes into 
explanation the makespan time and the execution time as the 
key objectives. Virtual Machines (VMs) are efficiently resourced 
by the suggested MOPDOA, which selects the host with the 
most available resources. The search procedure will be 
maintained with the assistance of MOPDO to identify a suitable 
virtual machine (VM) for allocating resources. To schedule 
activities for virtual machines (VMs), the load balancing 
procedure must be started when resources are allocated to 
them. With a 100-task assignment, Particle Swarm Grey Wolf 
Optimisation (PSGWO) achieves a makespan time of 20s 
compared to MOPDOA's 12s. In a similar vein, the current 
Improved Multi-Objective Multi-Verse Optimizer achieves 
186.33s for execution for 10 virtual machines, whereas the 
suggested method takes 175.45s for various VRs.

In this study, Muneeswari et al. [25] offer a new method for 
virtual machines in the cloud. A load balancer, which 
incorporates a deep network known as the Bi-LSTM approach, 
received input tasks from several users and forwarded them to 
it. When there is an imbalance in the load, the virtual machine 
migration will start by informing the load balancer of the 
specifics of the tasks. First, it equalises input loads in virtual 
machines (VMs). Then, it undergoes optimisation via Genetic 
Expression Programming (GEP). By comparing it to other 
methods like MVM, PLBVM, and VMIS, we were able to ascertain 
that the suggested LBVM is efficient according to many 
evaluation criteria like configuration delay, detection rate, 
accuracy, and so on. Compared to the current methods used by 
MVM, PLBVM, and VMIS, the suggested method shortens the 
migration time by 49%, 41.7%, and 17.8%, respectively, 
according to the experimental data.

The Map Reduce was created by Sundara Kumar and Mohan 
[26] and is an innovative and unique approach to improving the 
performance of data analytics. Scheduling data across cluster 
nodes on a larger network and putting it into distributed blocks 
called chunks are both handled by the Hadoop-Map Reduce 
paradigm. After analysing the results of several goal solutions, 
the best suited ones are chosen based on their short access 
time and high latency. The trials were run in a simulated 
environment using data from cluster racks and nodes located in 
different locations. In conclusion, the findings demonstrate a 
30–35% improvement in processing speed compared to earlier 
techniques in big data analytics. Methods for optimising the 
search for optimal solutions inside a cluster of nodes, with a 
success rate of 24-30% when dealing with solutions of several 
objectives.

In order to reduce the response users and successfully protect 
the integrity of network communication, Saba et al. [27] devised 
a distributed load balancing protocol that uses particle swarm 
optimisation for secured data management. With the use of 
distributed computing, it moves expensive computations closer 
to the node making the request, which lowers transmission 
overhead and delay. In addition, the suggested approach 
safeguards the communication machines against harmful 
devices by regulated trust evaluation. When compared to other 
options, the suggested protocol significantly outperformed 
them in terms of energy success rate (17%), end-to-end latency 
(14%), and network cost (19% on average), according to the 
simulation findings.

Particle swarm optimisation (PSO), throttled load balancing, 
evenly spread current execution (ESCE), and round robin (RR) 
are the current load-balancing methods that Shahid et al. [28] 
has evaluated in terms of performance. This research uses a 

cloud analyst platform to provide a comprehensive performance 
review of several load-balancing methods. We also measured 
total cost, optimised response time (ORT), data centre 
processing time (DCPT), virtual machine costs, data transfer 
costs, and efficiency with respect to different user bases and 
workloads in order to determine the best configurations for 
service broker policies that balance virtual machines. Prior 
research on throttled load-balancing algorithms, round-robin 
execution with equally distributed current, and virtual machine 
efficiency and response time largely ignored the relationship 
and the practical relevance of the application. There has been 
research into comparing various load-balancing methods. 
Various service broker policy (SBP) experiments have been 
conducted to demonstrate the capabilities of the load-balancing 
algorithm.

Swarm Intelligence (SI) is a cloud computing load-balancing 
method proposed by Al Reshan et al. [29]. Load global 
optimisation is not taken into account by any of the various 
options studied in the literature, algorithm, ACO, PSO, BAT, 
GWO, and many more. Grey Wolf Optimisation (GWO) research. 
This work proposes a hybrid GWO-PSO method that combines 
the strengths of both quick convergence and global 
optimisation. The load-balancing problem may be solved by 
combining these two approaches, which improve system 
efficiency and allocation of resources. While lowering total 
reaction time and attaining globally optimised quick 
convergence, the results of this research are encouraging when 
compared to other conventional methodologies. Overall, the 
suggested method reduces reaction time by 12% compared to 
competing methods. In addition, the suggested GWO-PSO 
method enhances PSO's convergence to 97.253% using the 
most optimum value received from the objective function.

An algorithm that ranks jobs according to their due date for 
completion has been suggested by Javadpour et al. [30]. 
Physical devices are also grouped according to their setup 
condition. Moving forward, the suggested approach will 
distribute tasks to nearby physical machines that share the 
same priority class. In addition, by utilising the DVFS approach, 
we lessen the energy consumption of the machines that handle 
the low-priority jobs. If the machines' scores change, or if the 
workload balance is compromised, the jobs are migrated using 
the proposed mechanism. Using the CloudSim package, we 
tested and verified the suggested approach. The simulation 
show that the suggested strategy reduced power usage by 20% 
and energy consumption by 12%.

To address the limitations of timely task execution and available 
resources, Bebortta et al. [31] propose method to enable 
optimum job offloading. This method distributes resources 
devices. In order to alleviate the strain on limited fog resources 
and expedite time-sensitive activities, the offloading problem is 
formulated as an integer linear problem. A task prioritisation 
strategy is utilised to minimise latency and energy consumption 
of fog nodes, taking into consideration the high dimensionality 
of activities in a dynamic environment. The results show that 
compared to benchmark methods, the proposed method 
outperforms them in terms of service delay. In short, the 
suggested method improves system efficiency with regard to 
latency and power consumption, and it provides an effective 
and realistic solution to the problems caused by fog computing 
and the Internet of Things.

The drawbacks and research gap of the existing techniques are 
mentioned in the upcoming section.

2.1 Ideology from the related works

What follows is an analysis of the problems found in the 
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recently published research on bio-inspired and current 
metaheuristic load balancing systems:

(i) When allocating jobs to appropriate virtual machines, most of 
the metaheuristic load balancing algorithms that were 
evaluated did not structuralize the elements of quality of 
service, service cost, and energy cost.

(ii) When it comes to resource allocation, the majority of the 
metaheuristic load balancing methods that were studied fell 
short when it came to creating a workable decision process that 
requires several load balancing criteria to cooperate.

(iii) When allocating workloads to appropriate virtual machines 
(VMs), the current hybrid metaheuristic loads balancing 
algorithms had trouble striking a balance between exploration 
and exploitation.

3. Resource optimisation problem and 
motivation
In this section, we will examine the problem formulation and 
the reasons behind creating the simulation in further detail.

3.1 Resource optimisation problem statement

With the (IoT), a wide diversity of tasks is possible, from 
monitoring sleep to keeping tabs on daily activities. Wearable 
and handheld devices are getting smarter and can link to social 
media accounts and monitor data, which improves people's 
lives. However, there are a lot of data transport and storage 
issues that come along with all this activity. A big data 
environment is being planned in the hopes of an interconnected 
world with a hundred-fold increase in user data-rate and 
connected devices, a tenfold increase in battery life for massive 
machine communiqué [32]. Problems with scalability, latency, 
and compatibility grow dramatically with the addition of even a 
single node leading to underappreciated services. Within the 
context of big data, there are two primary types of resource 
optimization problems: allocation and scheduling. There have 
been several attempts to optimize the Internet of Things (IoT), 
but most of these studies are either domain-specific or place 
too much emphasis on resource allocation at the expense of 
resource scheduling. Examples of domain-specific literature 
include studies devoted to healthcare job scheduling and 
management [33–34], transportation task offloading and 
scheduling [35], and industrial automations [36]. It is safe to 
state that there has not been complete adoption and 
implementation of a universal IoT framework that can be used 
in all IoT scenarios. With the correct strategy, optimizing 
resources can make docile to user expectations, which is a big 
step toward easing the complexity of popular IoT systems. In 
response to these issues, this study presents a new resource 
optimization technique that may be used in different Internet of 
Things settings.

3.2 Motivation and lapses

The Internet of Things (IoT) and value-added services generate 
and consume vast amounts of data; as a result, 
multidimensional optimization problems, such as how to choose 
the best service configuration in real-time and how to provide 
an efficient scheduling scheme for edge services, demand 
substantial research and development efforts [37]. Other issues 
with the dynamic resource allocation (DRA) method include the 
high IoT-based cloud systems and the resource under-
utilization problem. Because of their limited storage and power 
capabilities, the edge nodes exacerbate the security flaws 
introduced by the decentralized nature of the Internet of Things' 
topology. An effective resource optimization strategy that gives 

equal weight to scheduling and resource allocation is required 
to avoid these mistakes. There are a number of critical areas 
that need a breakthrough, including the algorithms' ability to 
satisfy users' demanding requirements (QoE besides QoS) and 
the longevity of edge nodes, particularly sensor nodes.

4. Proposed methodology

As the energy consumption (EC) paradigm promotes processing 
data closer to the source of creation, minimizing the amount of 
data transfers between devices and a centralized node, it 
enhances security and quality assurance. Using clustering 
techniques appropriately cuts latency in half, allowing IoT 
devices to complete [38]. This paper takes ZOA, an optimization 
technique, a step further by incorporating clustering aspects. In 
order to address the question of theories are practical for 
managing and optimizing resources in an internet of things 
(IoT) setting, this paper presents an algorithm that combines 
elements of the EC paradigm with the zebra optimization 
algorithm. This algorithm can solve scheduling and resource 
distribution problems in the IoT, and it is relatively secure. As a 
result, it provides an efficient method for optimizing resources 
in an IoT setting.

By allocating requests/tasks a time slice/quantum time based 
on their size without prioritizing requests, the suggested 
algorithm guarantees that all requests find an economical 
allocation of resources, which in turn provides the best 
presentation in terms of regular time. Lastly, the suggested 
system enables the distribution of requests to available 
resources according to the size of resources. Optimizing 
resources for the Internet of Things is further enhanced by this 
allocation criterion. When allocating resources, the quantum 
time is considered. In this context, we will use the symbols Q for 
quantum time, TTS for the total task size that the edge nodes 
have allocated for execution, and TR for the transfer rate. If 
resource is Q (i , j ), the task size is TS (i , j ), and the transfer rate 
is TR (i , j ), then be expressed as:

TAT = TS (i , j )
TR (i , j )

× Q (i , j ) (1)

where Q (i , j ) is defined as:

Q = TS (i , j )
TR (i , j ) (2)

as well as TTS stands for total task size, which is the total of all 
tasks' (ST) awaiting resources. The authors of this work set out 
to fill this knowledge vacuum by creating an optimizer that 
mimics the hunting and defensive behaviors of zebras. The 
zebra is a member of the ZOA population, which is an optimizer 
for populations. Mathematically speaking, the plain where the 
zebras are problematic, and each zebra characterizes a 
potential solution to the tricky.

Decision variable values are based zebra is located in the search 
space. As a result, the problem variables may be represented by 
the elements of a vector, and each zebra in the ZOA can be 
represented by this vector. A zebra population can be expressed 
as a matrix. The zebras are first placed in the search space at 
random. Equation (3) specifies the ZOA population matrix:
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X = [
X1

⋮
Xi

⋮XN
]

N ×m

(3)

where X  is the zebra populace, Xi  is the ith zebra, xi ,j  is the 
worth for the j -th problem variable projected by the ith zebra, 
N  is the sum of populace members (zebras), besides m  is the 
sum of decision variables.

The optimization issue has several potential solutions, and each 
zebra stands for one of them. Thus, the goals function may be 
assessed using the suggested the variables in the issue. In order 
to provide the values of the goal function as a vector, we use Eq. 
(4):

F = [
F1

⋮
Fi

⋮FN
]

N ×1

= [
F (X1)

⋮
F (Xi )

⋮F (XN )
]

N ×1

(4)

the i -th zebra's objective function value (Fi ) and the vector of 
values (F ) are defined. Finding solution to a problem is as simple 
as comparing the values acquired for the objective purpose; this 
will examine the quality of each potential solution and reveal 
which one is the best fit. When solving a minimization problem, 
the optimal solution is the answer that has the lowest objective 
function value. Alternatively, in maximizing issues, the optimal 
candidate is the one that has the highest objective function 
value. The ideal candidate solution needs to be found in each 
iteration since the zebra locations and, by extension, the values 
of the goal purpose, are updated throughout each iteration.

Members of the ZOA have been date by studying two zebra 
behaviors that occur in nature. Two examples of this kind of 
conduct are:

(i) Foraging, and

(ii) Defense strategies in contradiction of predators.

Therefore, in each repetition, members of the ZOA populace are 
updated in two dissimilar stages.

Phase 1: Foraging behavior

Initially, the population is revised according to zebra forage-
hunting behavior models. Zebras typically consume a diet of 
grasses and sedges, although they will also eat buds, fruits, 
bark, roots, and leaves if their preferred foods become limited. 
Between sixty and eighty percent of a zebra's time is devoted to 
feeding, depending on the quantity and quality of grass [38]. 
One kind of zebra is the plains zebra. This pioneer grazer clears 
the way for other zebra species that rely on grasses by feeding 
on the canopy of taller, less nutritious grass. As the pioneer 
zebra, the top performer in a population guides the others to its 
location in the search space in ZOA. So, utilizing Eqs. (5) and (6), 
we can mathematically simulate the process of zebras changing 
their phase

xi ,j
new ,P 1 = xi ,j + r . (PZj − I . xi ,j ) (5)

Xi = {Xi
new ,P 1, Fi

new ,P 1

Xi , else
(6)

where xi ,j
new ,P 1 is the new position of the ith phase, xi ,j

new ,P 1 is its 

jth dimension charge, Fi
new ,P 1 is its value, PZ  is which is the 

dimension, r  is a random sum in interval [0;1], I = round (1 +
rand ), where rand  is a random sum in the intermission [0,1]. 
Thus, I ∈ {1, 2) besides if limit I = 2, then there are much more 
vicissitudes in populace movement.

Phase 2: Defense policies against predators

Phase two involves updating the search space position of ZOA 
population members using strategy against predator assaults. 
Even though lions are the most common predators of zebras, 
other animals such as leopards, cheetahs, brown and spotted 
hyenas, wild dogs, and wild dogs pose a threat as well [39]. 
Another animal that zaps zebras when they get near water is 
the crocodile. The way zebras defend themselves differs in 
response to different predators. In order to evade a lion's 
assault, a zebra would often run in a zigzag pattern or make 
erratic, sideways turns. When smaller predators like hyenas and 
dogs ambush a hunter, the zebras respond by becoming more 
combative. Assumption number one in the ZOA design is that 
the subsequent two events occur with equal likelihood:

(i) In the first scenario, the zebra anticipates an assault from a 
lion and plans an escape; in the second scenario, additional 
predators target the zebra, and it decides to take the offensive.

When lions attack zebras, the initial tactic is for the zebras to try 
to flee from where they are right now. Thus, this tactic may be 
exactly characterized by the style S1 in Eq. (7). Second, when 
other predators attack a zebra, the rest of the herd will rush up 
to the wounded animal, forming a protective structure in an 
effort to confuse and terrify the assailant. Mathematically, this 
zebra tactic is characterized by mode S2 in Eq. (7). In the process 
of repositioning zebras, a new location is considered valid if it 
recovers the charge of the goal function. Using Eq. (8), we can 
simulate this update condition:

xi ,j
new ,P 2 = {S1:xi ,j + R . (2r − 1) . (1 − t

T ) . xi ,j Ps ≤ 0.5

S2:xi ,j + r . (AZj − I . xi ,j ) , else
(7)

Xi = {xi ,j
new ,P 2, Fj

new ,P2 < Fi

Xi , else
(8)

where xi ,j
new ,P 2 is the novel status based on second phase, xi ,j

new ,P 2 

is its jth dimension value, Fi
new ,P2 is its objective function charge. 

After the first two phases of a ZOA iteration, the population 
members are updated to finish the iteration. Updates to the 
algorithm population are carried out in accordance with Eqs. (5) 
to (8) until the algorithm is fully implemented. Over the course 
of several rounds, the optimal candidate solution is refined and 
stored.

Phase 3: Computational complexity

Here we take a look at how complicated ZOA is to compute. 
When preparing to use ZOA, the time complexity is O (N ⋅ m ),  
where N is the total sum of zebras and m is the sum of variables 
in the problem. ZOA incorporates the iteration count T  such 
that every member of the population undergoes bi-phase 
updates and objective function evaluations in each iteration. 
Computing this update procedure has complexity of O (2 ⋅ N ⋅
m , ⋅ T ), . Therefore, ZOA's overall computational complexity is 
O (N ⋅ m ⋅ (1 + 2 ⋅ T )). The roadmap of the projected perfect is 
exposed in Figure 1.
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Figure 1. Workflow of the projected scheduling scheme

 The planned pipeline has been dissected and its process is 
shown in Figure 1. Big data environment mobile user devices, 
base stations, cloud nodes, and fog nodes make up this system. 
The scheduler's steps for the suggested strategy are as follows: 
(1) A appeal is sent to the fog node with the mobile data. This (2) 
creates the fog node and sends the job to the main station. (3) 
The base station estimates, schedules, and assigns tasks to the 
nodes in the cloud. (4) At a certain interval, the cloud node will 
submit the completed job. Users start the process, and nodes in 
the cloud and fog keep in touch with each other. The job that 
was passed from the fog node is collected by the station. After 
receiving the job, the base station breaks it down into its 
component parts, makes an estimate, and then provides the 
aggregate result. The findings are combined by the base station 
once the work is decomposed. The task is then scheduled and 
sent. At a certain moment, the aggregated outcome is applied 
in the base station. Users get the final, combined result when it 
is computed. The request is sent to the fog node using the 
suggested architecture, which uses the smartphone network. 
After leaving the fog node, the job is directed to station. 
Through the base station, the job is sent and received. The base 
station sends the deconstructed job to the cloud node. The work 
is done in the cloud node, and then the output is performed. 
The reconfiguration agent comes after the architectural step.

4.1 Reconfiguration agent

When the judgment unit uses the most recent state 
characteristics to create a reconfiguring activity. At each T  step, 
the RA reaps the advantages of both the prior reconfiguring 
activity and the transactions that came before it. Rearranging 
the reconfiguring action is done using the reconfiguration 
agent. Using the reconfiguration agent, the reconfiguring 
procedure may be rearranged. Here we will go over the steps to 
create the reward, training, and state components.

4.1.1 Reward
Keep in mind that reducing the total delay cost for all network 
jobs is the objective of the problem being researched. Reducing 
the total cost of delay should be the goal of any reconfiguration 
effort. What this means is that every reconfiguration procedure 
has to keep the total cost of configuration step to a minimum. 
Maximizing the cumulative reward for an episode is the goal of 
a deep learning agent. So, the compensation for each 
reconfiguration phase is defined as the inverse of the tardy was 
just applied per second at that stage.

In one stage, employing both buffer jobs and finished tasks, the 

timeliness cost is generated. During a reconfiguration process, 
allow each completed job to be transformed. When a present 
finished. R′ besides r″ are the starting and end duration of the 
contemporary reconfiguration stage, singly. Consequently, the 
period step [r′, r″] reward is exposed in Eq. (9):

RR = 1
r′ − 1

r″ [∑x =0

N

∑
y =0

O

∝y

Cy
(r′ − max (r′, ly ) ) ] + [∑y =0

N

∝y

Cy
(r′ −

max (r′, ly ))]
(9)

 The first and ultimate stages of reconfiguration are denoted as 
r′ and r″, respectively. The reconfiguration judgment awards 
and distributes the cumulative prizes from each episode. What 
follows is an explanation of the reconfiguration judgment.

4.1.2 Reconfiguration judgment

To decide whether to reorganize, the reconfiguration judgment 
is activated when the initial device finishes a job. Only when the 
RA wants to decide to reconfigure does it do so. With the help of 
the reconfiguration judgment system, human reconfiguration is 
reduced in frequency. In any case, the RA will need a lot of 
practice events before it figures out how to make 
reconfigurations less frequent.

Let t′ = 0, 1, 2, ⋅ ⋅ ⋅ , N  characterize the existing manufacture 
mode and wt′ signify its buffer. The present scheme time is 
designated by t′, rc . The x ’s current area tardy cost is 
represented by βx , where the moment in time is defined by 
current cost. The Eq. (10) represents the current cost

βx = { ∝y rc > ly

∝y

Cy
r′ > ly > r″

0 else

(10)

 At the three main decision unit makes a decision to represented 
as rc , queue is represented as ly . The cost function is signified 
as r′ and r″. A combination of the task's beginning and end 
values, as well as its current computation cost, yields the final 
result.

Case 1: When wt′ is blank.

Case 2: When βy  is slighter than the xth % unresolved task in wt′ 
here, β  is a list βy  is the mean of the contemporary unit y

βy = 1
N ∑

x =0

N

βx
(11)

 The mean spoken as βx , and the entire sum of examples 
obtainable is represented as N .

Case 3: When wt′ and N  additional tasks have been processed 
and βy  is less than y% of β . Pay attention to the fact that every 
attribute of a state is an array. To accurately reproduce the 
qualities of the underlying data, the standard error, mean, 
minimum, and maximum are calculated for each state attribute. 
Hence, the state vector is 16 dimensions long (4 × 4). We use 
min-max normalizing for state attributes. Equation (12) 
expresses the inverse of state feature Ft″, Ft″.
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Ft″ = Ft′ − max (Ft′)
max (Ft′ ) − min (Ft′)

(12)

 The functions are characterized as min ( ⋅ ). The collection of 
altogether Ft′ without resampling aeras is characterized by Ft″ in 
this circumstance. For the reserve Ft″, the max-min algorithm 
gives advanced importance to task Ft″ than tasks. With max-min, 
numerous minor processes may operate in tandem with the 
bigger ones. Finishing the longest work first will establish the 
total timeframe [40]. A reduction in cost delay episode earns RA 
as a reward. Because of the reconfiguration decision, human 
configuration is diminished. Deep learning employs an effective 
preparation agent to plan the job after the device 
reconfiguration phase is over. The scheduling agent's job is to 
pick the best resource and service combination for each new job 
that comes up.

5. System requirements analysis

The computerized large data processing system's primary 
features are, among other things, the ability to access data 
sources, process data streams, and support for individualized 
data processing rules. Separate introductions to these modules 
are forthcoming.

Access the data source
With this system, you may obtain data from a wide range of 
sources, the majority of which are online but also include offline 
options. Some applications need processing both online and 
modest amounts of offline data, even if the system is designed 
to process data streams online. The data will be stored offline in 
HDFS by the system. The system organizes and categorizes data 
stored online according to topics; users have the option to 
enable data loss in order to enhance application performance. 
Lastly, data goes into the following processing data Low once a 
job to a data source.

Data stream processing

Different use cases call for different data stream processing 
logic. The system may now accommodate many types of data 
processing logic thanks to a functional component that 
summarizes typical data processing procedures. As a result, all 
the user has to do is combine the necessary functional 
components in a flexible way and indicate their topological 
connection.

Data storage: Procedures for data streams to persist. Back 
both classic MySQL and key-value HBase databases.

Data statistics: Produce broad statistics regarding the data 
flow. Sum, count, average, and max/min are the aggregation 
functions that are supported.

Data collection: Data stream matching, data collection from 
the field, and output should be done periodically. In addition, 
you may select the sorts of fields and give them names.

Data Filtering: Restrict the flow of data. By implementing 
logical operations (such OR besides AND) on the consequences 
of corresponding several fields, filtering rules can reveal data 
that fits the constraints. These operations include regular, 
range, precise, and fuzzy matching for a field.

According to Table 1, the experimental setup consists of four 
Swarm nodes: one master node and three worker nodes. Using 
the NGINX service, the Swarm instructions are executed on the 
master node. Schedules, DNS service discovery, scalability, and 
container load balancing are all handled by Swarm itself on all 

nodes. Each node in the Swarm will have its own copy of the 
load balancer, which will distribute requests among them as 
needed.

Table 1. Swarm services for big data request

Type Port Container
Load Balancer 80 NGINX

Front End PHP service 8080 Apache
API server (Python) 5000 Python
API server (Redis) 6379 Redis

6. Result and discussion
The details of the projected cloud environment are detailed in 
the simulated environment, and the performance matrices 
cover each key matrix. Present scheduling and load-balancing 
methods are contrasted with the suggested method in the 
comparative analysis section. The jobs utilized in this project 
range from one hundred to five hundred. Figures 2 to 6 
demonstrate comparisons between the suggested model and 
many current methodologies, including the Butterfly 
optimization Algorithm (BOA), the Stray Lion optimization 
Algorithm (SLOA), and the mother optimization Algorithm 
(MOA).

Figures 2 through 6 illustrate the performance of various 
parametric metrics in relation to distinct tasks. The analysis of 
the BOA model yielded the following results for 100 tasks: 
makespan = 482, energy consumption = 51.6157, balanced CPU 
utilization = 0.0168, optimized memory utilization = 5313.61, 
and prioritization = 5930. Subsequently, the 200th task was 
executed, with a duration of 1091 iterations, an energy 
consumption of 66.6182 ± 0.02087, optimized memory usage of 
5404.47, and prioritization of 29,800. Subsequently, the 300th 
task was executed, with a duration of 1788 seconds, an energy 
consumption of 81.9739, balanced CPU utilization of 0.0202, 
optimized memory utilization of 5473.9, and prioritization of 
44,850. The 400th task was completed with a duration of 2902 
instructions, an energy consumption of 84.1332, balanced CPU 
utilization of 0.0935, optimized memory utilization of 5619.42, 
and prioritization of 49,800. Following that, the 500th task was 
executed with a duration of 2457 iterations, an energy 
consumption of 96.9864, balanced CPU utilization of 0.0126%, 
optimized memory utilization of 5721.11, and prioritization of 
52,750.

Figure 2. Visual representation of different models

https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image2.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image2.png


https://www.scipedia.com/public/Vijayaraj_et_al_2024a 9

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in 
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

Figure 3. Graphical description of various models

Figure 4. Analysis of different optimization models

Figure 5. Visual presentation of proposed model with existing procedures

 Subsequently, the SLOA model assigns the following values to 
the 100 tasks: span (100,506, 66.1581), balanced CPU utilization 
(0.02424), optimized memory utilization (6029.24), and 
prioritization (5950). The 200th task had a duration of 1097 
iterations, an energy consumption of 69.6314, a balanced CPU 
utilization of 0.01473, optimized memory utilization of 6380.03, 
and prioritization of 30,900. The 300th task had a duration of 
1769 iterations, 74.8653 0.02096 energy consumption, and 
balanced CPU utilization of 6573.92 45,850 correspondingly. 
Following that, the 400th task was executed with a duration of 
2154, an energy consumption of 75.9833, balanced CPU 

Figure 6. Analysis of different optimization models for task prioritization

utilization of 0.04096, optimized memory utilization of 6879.92, 
and prioritization of 50,697. Following that, the 500th task was 
executed with a duration of 2365, a balanced CPU utilization of 
78.7313, an energy consumption of 0.06096, an optimized 
memory usage of 6943.92, and a prioritization of 53,954.

The MOA model then computes the makespan for the 100th 
task to be 100 and the balanced CPU utilization to be 601 
79.8525 0.03542 6125.37 6025. Then, the 200th task was 
executed with a duration of 1165, an energy consumption of 
80.3654 0.05649, and a balanced CPU utilization of 6596.32 
42,238. Subsequently, the 300th task was executed with a 
duration of 1874 82.9542, optimized memory usage of 0.02465, 
balanced CPU utilization of 6685.68, and prioritization of 63,375. 
Then, the 400th task was executed with a duration of 2187, an 
energy consumption of 84.743 x 0.02546 x 6896.74, and a 
balanced CPU utilization of 64,481. Then the 500th task, with the 
following priorities: optimized memory usage (7098.32), 
makespan (2396 x 86.9845 x 0.03621), and prioritization 
(66,598).

The ZOA model then calculates the makespan for the 100th task 
to be 100 299 42.7248 0.00338 4893.05 and the balanced CPU 
utilization to be 6950. Then, the 200th task, with a duration of 
1013 45.1718, balanced CPU utilization of 0.00461, optimized 
memory utilization of 4915.5, and prioritization of 50,900, was 
executed. The 300th task was completed with a duration of 
1546 iterations, an energy consumption of 48.2737, balanced 
CPU utilization of 0.00125, optimized memory utilization of 
5085.77, and prioritization of 70,850. Following that, the 400th 
task was executed, with a duration of 1972, an energy 
consumption of 55,4123, balanced CPU utilization of 0.01240, 
optimized memory utilization of 5241.27, and prioritization of 
80,800. Following that, the 500th task was executed, with a 
duration of 2015, an energy consumption of 61.9782 0.00934, 
an optimized memory usage of 5383.95, and a prioritization of 
81,750. The proposed model explains the results in terms of 
makespan, energy consumption, task priortitization, memory 
usage and balanced CPU utilization. In future work, the results 
will be improved by adding resource utllization, number of 
overloaded tasks, training time reduction, etc.

7. Conclusions and findings

Using ZOA to provide well-informed options for job situations 
and reconfiguration, this article explored intelligent planning 
task delivery. The problem is solved by providing a system 
design that allows for careful planning and reconfiguration in a 
big data setting. We create a quantitative approach to lower the 
total cost of timeliness for all jobs. Furthermore, a model for 
optimization is proposed that incorporates a timetable and 
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agents that may be reconfigured. The agency's characteristics, 
operations, and incentives are aimed at the two services. Using 
cloud-edge computing in a big data setting, it claims to provide 
a high-performance computing strategy that makes good use of 
available resources and evenly distributes processing loads. The 
suggested protocol also utilized the ZOA method to discover 
effective keys with the best possible local besides global fitness 
functions. In order to maintain a steady connection with little 
latency, the fitness function makes use of the energy and 
reliability aspects of the channel. On top of that, network edges 
protect data storage and gathering from network risks while 
small hardware devices are dispersed and limited incur little 
costs. Based on the results of the experiments, it is evident that 
the ZOA reduces energy usage by up to 18.74J compared to 
other models like MOA, SLOA, and BOA. However, the proposed 
model achieved low performance in minimizing the makespan 
due to high interia weight of the proposed zebra optimization 
algorithm. This must be addressed in future work and also tries 
to minimize the high computational time.

7.1 Future Work
The future of this project depends on investigating and 
resolving issues related to its computational complexity and 
cost efficiency. Implementing the provided methodologies for 
Big Data requests multi-cloud surroundings is also within the 
realm of possibility.
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