
Balancing the load and scheduling the tasks using zebra optimizer
in IoT based cloud computing for big-data applications

V. Vijayaraj1, M. Balamurugan1, Monisha Oberoi2

1 School of Computer Science of Engineering, Bharathidasan University, Tiruchirappalli, 620023, India

2 Security Services Sales, IBM Innovation Pte Ltd

Abstract
Task scheduling is one of the major problems with Internet of Things (IoT) cloud computing.
The need for cloud storage has skyrocketed due to recent advancements in IoT-based
technology. Sophisticated planning approaches are needed to load the IoT services onto
cloud resources professionally while meeting application necessities. This is significant
because, in order to optimise resource utilisation and reduce waiting times, several
procedures must be properly configured on various virtual machines. Because of the
diverse nature of IoT, scheduling various IoT application activities in a cloud-based
computing architecture can be challenging. Fog cloud computing is projected for the
integration of fog besides cloud networks to address these expectations, given the
proliferation of IoT sensors and the requirement for fast and dependable information
access. Given the complexity of job scheduling, it can be difficult to determine the best
course of action, particularly for big data systems. The behaviour of zebras in the wild
serves as the primary basis of stimulus for the development of the Zebra Optimisation
Algorithm (ZOA), a novel bio-inspired metaheuristic procedure presented in this study. ZOA
mimics zebras' feeding habits and their defence mechanisms against predators. Various
activities are analysed and processed using an optimised scheduling model based on ZOA to
minimise energy expenditures and end-to-end delay. To reduce makespan and increase
resource consumption, the technique uses a multi-objective strategy. By using a regional
exploratory search strategy, the optimisation algorithm may better utilise data and stays
out of local optimisation ruts. The analysis revealed that the suggested ZOA outperformed
other well-known algorithms. It was advantageous for big data task scheduling scenarios
since it converged more quickly than other techniques. It also produced improvements of
18.43% in several outcomes, including resource utilisation, energy consumption, and make
span.

 OPEN ACCESS

Published: 31/05/2024

Accepted: 21/05/2024

Submitted: 04/04/2024

DOI:
10.23967/j.rimni.2024.05.009

Keywords:
Big Data Application
Internet of Things
Cloud Storage
Zebra Optimization Algorithm
Task Scheduling
Resource Utilization
big data

Revista Internacional de Métodos
Numéricos para Cálculo y Diseño
en Ingeniería

Correspondence: V. Vijayaraj (vijay.raj.phd@gmail.com), M. Balamurugan (mbala@bdu.ac.in), Monisha Oberoi
(mooberoi@sg.ibm.com). This is an article distributed under the terms of the Creative Commons BY-NC-SA license 1

1. Introduction

1.1 Background of big data applications

Tools, technologies, and architectures with increased efficiency,
flexibility, and resilience have emerged as a result of the Big
Data age. Complex architectures with built-in scalability and
optimisation capabilities are necessary for big data applications.
The environments in which big data applications are deployed
must be updated and upgraded on a regular maximise their
scalability and flexibility [1]. Cloud-based services are being
used by organisations to improve performance and reduce
overall costs. Because it is lightweight, containerisation, a cloud-
based technology, is becoming more and more popular. One of
the most popular and widely used container-based
virtualizations is Docker, which is an open-source project that
makes it easy to create, operate, and deploy applications [2].

Big data applications require large-scale environments and
resources in order to store, process, and analyze this massive
amount of data in a distributed manner. Huge data needs can
be effectively addressed by cloud computing and
containerization, but accurate and appropriate load balancing is
required [3]. Load balancing is crucial because the strain on
servers grows exponentially as resource use rises. Furthermore,
one of the key components of big data applications is the
precise and quick modification of containers based on services

and load.

With rising demands and use, optimising an application's
performance is a constant battle. The goal of technological
advancements is always to achieve greater levels of
performance and efficiency. All organisations must use an
environment that provides fault tolerance, performance, and
dependability [4]. When it comes to providing performance,
resilience, availability, and an affordable solution, cloud
computing has carved out a place for itself. Cloud computing is
being used by modern technologies to their advantage since it
makes resources widely available in an efficient and
professional way [5]. The end user now gets access to resources
including software, platforms, and infrastructure without
requiring any administration work thanks to the Cloud.
Everything is available as a service on the cloud, including
cutting-edge innovations like big data and the (IoT). As seen in
Elhoseny et al. [6], several companies are providing cloud-based
solutions for managing Big Data. Scaling the amount of physical
resources is how elasticity is done in a multi-tiered cloud
system. There are two methods for scaling resources: vertical
scaling, which involves adding additional resources to the
deployed virtual machines, or horizontal scaling, which involves
adding more virtual machines [7]. Both approaches have more
steps, have latency problems, and might be more expensive.
Several paradigms and architectures have been researched and
assessed in an effort to speed up procedures and optimise

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 2

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

application development costs.

Data mining can quickly convert vast amounts of data into
knowledge and ultimately value by using pertinent algorithms
to process the data and uncover hidden important information
[8]. Unfortunately, due to the present rapid growth of data
volumes, classic techniques based on single-node serial mining
are no longer appropriate for handling large amounts of data.
Cloud computing, as a distributed platform, may integrate
numerous computer resources and significantly boost
technological capabilities. Compared to standard algorithms, it
works better for processing large amounts of data [9].
Furthermore, conventional PCs may computing, which lowers
the complexity and expense of cloud platform creation to some
level [10]. Cloud computing models and platforms also do not
have strict criteria for network nodes.

With a computing paradigm that is integrated from the
advancement of traditional computers and technical networks,
cloud computing has drawn more attention in recent years [11].
Cloud computing's distributed storage, virtualization, and
parallel computing technologies provide fresh approaches to
building computer platforms for monitoring the state of data
centres' electrical equipment. Electric power companies' current
basic computing facilities may be integrated to offer strong,
dependable storage and processing capacity support, which is
helpful for monitoring online power equipment over an
extended period of time [12].

Monitoring and data gathering enhance the capacity for
intelligent diagnostics and real-time analysis. Many high-
reliability platforms, like Hadoop, Spark, and Storm, have
developed with the fast growth of cloud computing technology,
offering advantageous tools for the centralised processing of
massive amounts of power equipment nursing data [13]. How
can these developing computing models be integrated into the
power equipment monitoring center's data processing, even if
they all provide a single programming interface and hide more
intricate features than conventional parallel computing
programming models? It is still worthwhile to do research on
the topic of combining distinct professional backgrounds to
address real-world issues and various high-level applications in
the monitoring system [14].

Currently, real-time traffic data analysis, weather data analysis,
and medical data storage are three areas where cloud
computing technology is making significant progress. Cloud
computing is inexpensive, and the machines in the cluster setup
don't need to meet any complex specifications. Integration with
conventional data mining techniques can enable more effective
administration and analysis of power monitoring data thanks to
cloud computing's enormous scale and quick computation
speed. In conclusion, because of its capacity to delve deeper
into the shifting law of the load curve and successfully identify
years [15].

1.2 Issues on energy consumption

The majority of monitoring systems were created for specific
types of equipment in the early stages of condition monitoring
technology development, and each scheme was dispersed and
isolated. This was an info island where there was no data
exchange or interaction, making it difficult to manage and
thoroughly analyse monitoring data. Furthermore, it is
challenging to share the hardware network, computer power,
and storage—of various monitoring systems, which wastes IT
resources. As a result, an integrated management system that
was constructed in the main control room has surfaced and is
capable of processing different monitoring data that are
gathered by various monitoring devices centrally [16]. The

monitoring device's present limitations, however, are that it can
only transfer the streamlined, monitoring centre, and the
frequency of data gathering is low. As a result, the monitoring
centre will eventually gather an incredible quantity of data, and
the information processing capacity of the current monitoring
system will not be able to handle the demands of processing
and storing such a large amount of data. It is clear that the
serial processing approach has long been inadequate to handle
the demands of processing massive volumes of data. Various
computing challenges faced in scientific research and
engineering practice have historically been attributed to the
typical parallel computing paradigm based on high-
performance processors.

As a result, the monitoring device processes expert data locally
and feeds it to the present monitoring system. Before being
uploaded, the monitoring device, for instance, has to analyse
the partial discharge waveform data from high-voltage electrical
equipment into the sum of discharges, matching discharge
phase [17]. Uploading "familiar data" rather than "raw data" can
save money on storage at monitoring centres and network
transmission expenses. Even yet, a monitoring centre that
combines data from several monitoring device specifications
still has a difficult time diagnosing target device failure and
doing a thorough condition assessment.

1.3 Issues on resource allocation
Various formulations of the resource allocation problem (RAP)
have been suggested in line with various issue scenarios; the
RAP may describe all real-world circumstances. Internet of
Things (IoT) resource allocation problems (RAPs) are large-scale
and multi-faceted, and deterministic algorithms are unable to
solve them because they are nondeterministic polynomial (NP)-
complete. While genetic algorithms (GA) and other NP
algorithms have been researched for their ability to identify
near-optimal solutions, they have a propensity to generate a
significant number of infeasible keys while searching [18]. Due
to GA's shortcomings, a particle swarm optimisation (PSO)
metaheuristic clustering method was suggested for nonlinear
MORAP. This method aims to find the Pareto-optimal keys,
which are solutions that are not overshadowed by other
solutions; in other words, solutions that improve one
preference criterion without compromising another. To tackle
scheduling challenges, a Pareto optimum solution based on
time is employed to convert decisions. The suggested Pareto
optimisation methods have proven to be effective in producing
optimal solutions. There is an urgent need to optimise energy
usage in order to extend the lifespan of the network, as the
Internet of Things (IoT) is primarily used for environmental
monitoring, data collecting, and processing. Due to their limited
battery life, sensor and actuator nodes in the Internet of Things
(IoT) may be prematurely destroyed if their resources are not
used efficiently [19]. As a result, EC paradigms that revolve
around edge nodes have grown in popularity as a way to
address IoT's MORAP. This change in strategy has prompted a
lot of research on RA as a way to handle traffic pressure and the
difficulties of IoT and cloud computing. Scheduling service
resources, guaranteeing quality of service (QoS), and merging
multiple services are some of the well-established issues that
come with the edge computing paradigm, which is related to
cloud computing [20].

Research on the potential uses of big data technologies based
on cloud computing in the electricity sector is now in its early
stages. When it comes to online monitoring data, the majority
of cloud computing systems now used by monitoring centres
rely on a single Hadoop architecture, which has its limits when it
comes to storing data prior to centralised processing and
causes processing delays that are too lengthy [21]. Streamlining

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 3

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

data processing to better meet the flow of data is the way of the
future. The most prevalent approach involves using a database
management which might not be compatible with earlier
systems, and there hasn't been a complete and efficient
solution that addresses velocity, volume, and diversity yet. The
issue of real-time anomaly detection and the need for quick
processing of monitoring data are gaining prominence [22].
Even while cloud computing's entry into the power sector is very
significant from a research standpoint, the industry's use of the
technology is still in its early stages, and further investigation is
required before it can be integrated into power generation.
Although cloud computing has garnered a lot of interest due to
its great speed, no research has yet examined how to use it for
processing massive amounts of data in real-time [23]. Smart city
or digital twin city development with VR capabilities may be
accelerated with the help of data management and multisource
access technologies, which also offer robust support for
intelligent on a city-scale [24]. Due to the complex process of
the integrated prediction model and meeting in real-time for
intelligent power schemes, the processes have often become
more challenging for single computing resources to handle.

Implementing communication protocols to plan data transfer is
an excellent method to reduce or eliminate data collision
altogether [25]. When it comes to multitasking, the simplest and
oldest scheduling protocol or algorithm is the round robin (RR)
static algorithm. It provides for the equitable distribution of
time slots across resources and servers. The cyclic queue, which
is constrained by a time slice, also called quantum time,
performs each job in turn. A real-time pre-emptive method,
round robin controls a node's access at each transmission
instance according to a specified circular sequence and reacts to
real-time occurrences. On the other side, resource-based (RB)
algorithms prioritise the allocation of resources from highest to
lowest using a greedy approach and a heuristic technique. So,
to maximise throughput while minimising power consumption,
it repeatedly chooses the most demanding request or job and
assigns it to a suitable and available server for processing [26].
For diverse requests and jobs, the RB dynamic algorithm works
well by looking at resource performance records over time to
determine which one is the best fit, which improves
performance overall.

1.4 Contribution of the research work
The research presented here pertains to load-balancing large
data applications running in containerised systems such as
Docker. Based on the Docker Swarm and ZOA architecture, this
paper proposes a container scheduling technique for large data
applications. This article explains how to manage the workload
and service discovery of large data applications using the
Docker Swarm concept. In order to decrease energy costs and
end-to-end latency, various activities are evaluated and
processed using an efficient scheduling model. To improve the
optimisation algorithm's data utilisation and prevent it from
being mired in local optimisation, a regional exploratory search
method is employed..

1.5 Organization of the Work

Section 1: Includes the background of big data, issues of energy
consumption, introduction of resource allocation problem and
contribution of the research work.

Section 2: The review of existing techniques and its issues are
mentioned.

Section 3: The motivation of the proposed model with resource
allocation problem is given.

Section 4: The brief explanation of the proposed model is

detailed.

Section 5: The requirement of system model and its explanation
is mentioned

Section 6: The result analysis and its graphical discussion are
provided.

Section 7: The final contribution of the projected model is given
with its future direction.

2. Related works
Foreseeing data stream frequency changes allows Sun et al. [21]
to make adjustments to the grouping method based on
prediction findings from a deep reinforcement learning model.
In addition to efficiently managing resources, this will allow the
system to swiftly adjust to fluctuations in data streams. This 1)
Identify the primary causes of load skewness in distributed
stream join systems and describe the application-level load
balancing problem thoroughly. 2) Construct a Gated Recurrent
Unit Sequence to Sequence model for forecasting the
distribution of key frequencies in streams; for real-time
resolution of the load imbalance issue caused by hot keys,
provide a dynamic grouping approach and a feedback-based
resource elasticity scaling mechanism. 3) Using the prediction
model and the technique that was suggested, create an
adaptive stream join system called Aj-Stream on Apache Storm.
4). Conduct comprehensive tests on a large-scale real-world
dataset as well as several synthetic datasets to assess the
system's performance. Experiments with static and dynamic
data streams of different skewnesses show that the Aj-Stream
suggested in this article maintains consistent latency and
throughput. Aj-Stream showed a 22.1% improvement in system
throughput and a 45.5% reduction in scheme latency while
handling data streams that fluctuate regularly, in contrast to
current stream-connected systems.

In order to solve this problem, Sharma et al. [22] suggested two
algorithms: dynamic SDN (dSDN) and priority scheduling and
congestion management (eSDN). Nevertheless, the rate of
expansion of the (IoT) is uncertain and may even be exponential
in the future. In order to keep up with this trend, key to manage
the increasing intricacy of diverse devices and keep network
latency to a minimum. As a result, we offer temporal deep Q
learning for the dSDN controller in this article, which is an
extension of our earlier work. An example of a self-learning
reinforcement-based model is a tDQN, or Temporal Deep Q-
learning Network. The tDQN agent iteratively learns to reduce
network latency by improving decision-making for switch-
controller mapping using a reward-punish mechanism. We have
developed a method called tDQN that optimises latency and
dynamic flow mapping without controllers in the best locations.
In order to dynamically redirect traffic to the most appropriate
controller, a multi-objective optimisation problem is developed
for flow fluctuation. The tDQN achieves better throughput, loss
than conventional networks, eSDNs, and dSDNs, according to
comprehensive simulation findings that account for different
network circumstances and traffic.

Beginning with virtualization and distributed cloud computing,
Zhu [23] lays out the idea and process for implementing load
balancing and suggests a better genetic load balancing
algorithm. As meta-heuristic algorithms, traditional genetic
algorithms might suffer from sluggish convergence. For our
simulations, we relied on the free and open-source Cloudsim
cloud simulation tool. When tested in a cloud computing
environment, the results prove that the enhanced evolutionary
algorithm outperforms the conventional one in terms of
adaptability to load balancing needs and efficiency in resource
utilisation.

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 4

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

A method for scheduling tasks based on optimisation was
presented by Chandrashekhar et al. [24]. When allocating
resources in the Internet of Things (IoT), the Multi-Objective
Prairie Dog Optimisation (MOPDO) method takes into
explanation the makespan time and the execution time as the
key objectives. Virtual Machines (VMs) are efficiently resourced
by the suggested MOPDOA, which selects the host with the
most available resources. The search procedure will be
maintained with the assistance of MOPDO to identify a suitable
virtual machine (VM) for allocating resources. To schedule
activities for virtual machines (VMs), the load balancing
procedure must be started when resources are allocated to
them. With a 100-task assignment, Particle Swarm Grey Wolf
Optimisation (PSGWO) achieves a makespan time of 20s
compared to MOPDOA's 12s. In a similar vein, the current
Improved Multi-Objective Multi-Verse Optimizer achieves
186.33s for execution for 10 virtual machines, whereas the
suggested method takes 175.45s for various VRs.

In this study, Muneeswari et al. [25] offer a new method for
virtual machines in the cloud. A load balancer, which
incorporates a deep network known as the Bi-LSTM approach,
received input tasks from several users and forwarded them to
it. When there is an imbalance in the load, the virtual machine
migration will start by informing the load balancer of the
specifics of the tasks. First, it equalises input loads in virtual
machines (VMs). Then, it undergoes optimisation via Genetic
Expression Programming (GEP). By comparing it to other
methods like MVM, PLBVM, and VMIS, we were able to ascertain
that the suggested LBVM is efficient according to many
evaluation criteria like configuration delay, detection rate,
accuracy, and so on. Compared to the current methods used by
MVM, PLBVM, and VMIS, the suggested method shortens the
migration time by 49%, 41.7%, and 17.8%, respectively,
according to the experimental data.

The Map Reduce was created by Sundara Kumar and Mohan
[26] and is an innovative and unique approach to improving the
performance of data analytics. Scheduling data across cluster
nodes on a larger network and putting it into distributed blocks
called chunks are both handled by the Hadoop-Map Reduce
paradigm. After analysing the results of several goal solutions,
the best suited ones are chosen based on their short access
time and high latency. The trials were run in a simulated
environment using data from cluster racks and nodes located in
different locations. In conclusion, the findings demonstrate a
30–35% improvement in processing speed compared to earlier
techniques in big data analytics. Methods for optimising the
search for optimal solutions inside a cluster of nodes, with a
success rate of 24-30% when dealing with solutions of several
objectives.

In order to reduce the response users and successfully protect
the integrity of network communication, Saba et al. [27] devised
a distributed load balancing protocol that uses particle swarm
optimisation for secured data management. With the use of
distributed computing, it moves expensive computations closer
to the node making the request, which lowers transmission
overhead and delay. In addition, the suggested approach
safeguards the communication machines against harmful
devices by regulated trust evaluation. When compared to other
options, the suggested protocol significantly outperformed
them in terms of energy success rate (17%), end-to-end latency
(14%), and network cost (19% on average), according to the
simulation findings.

Particle swarm optimisation (PSO), throttled load balancing,
evenly spread current execution (ESCE), and round robin (RR)
are the current load-balancing methods that Shahid et al. [28]
has evaluated in terms of performance. This research uses a

cloud analyst platform to provide a comprehensive performance
review of several load-balancing methods. We also measured
total cost, optimised response time (ORT), data centre
processing time (DCPT), virtual machine costs, data transfer
costs, and efficiency with respect to different user bases and
workloads in order to determine the best configurations for
service broker policies that balance virtual machines. Prior
research on throttled load-balancing algorithms, round-robin
execution with equally distributed current, and virtual machine
efficiency and response time largely ignored the relationship
and the practical relevance of the application. There has been
research into comparing various load-balancing methods.
Various service broker policy (SBP) experiments have been
conducted to demonstrate the capabilities of the load-balancing
algorithm.

Swarm Intelligence (SI) is a cloud computing load-balancing
method proposed by Al Reshan et al. [29]. Load global
optimisation is not taken into account by any of the various
options studied in the literature, algorithm, ACO, PSO, BAT,
GWO, and many more. Grey Wolf Optimisation (GWO) research.
This work proposes a hybrid GWO-PSO method that combines
the strengths of both quick convergence and global
optimisation. The load-balancing problem may be solved by
combining these two approaches, which improve system
efficiency and allocation of resources. While lowering total
reaction time and attaining globally optimised quick
convergence, the results of this research are encouraging when
compared to other conventional methodologies. Overall, the
suggested method reduces reaction time by 12% compared to
competing methods. In addition, the suggested GWO-PSO
method enhances PSO's convergence to 97.253% using the
most optimum value received from the objective function.

An algorithm that ranks jobs according to their due date for
completion has been suggested by Javadpour et al. [30].
Physical devices are also grouped according to their setup
condition. Moving forward, the suggested approach will
distribute tasks to nearby physical machines that share the
same priority class. In addition, by utilising the DVFS approach,
we lessen the energy consumption of the machines that handle
the low-priority jobs. If the machines' scores change, or if the
workload balance is compromised, the jobs are migrated using
the proposed mechanism. Using the CloudSim package, we
tested and verified the suggested approach. The simulation
show that the suggested strategy reduced power usage by 20%
and energy consumption by 12%.

To address the limitations of timely task execution and available
resources, Bebortta et al. [31] propose method to enable
optimum job offloading. This method distributes resources
devices. In order to alleviate the strain on limited fog resources
and expedite time-sensitive activities, the offloading problem is
formulated as an integer linear problem. A task prioritisation
strategy is utilised to minimise latency and energy consumption
of fog nodes, taking into consideration the high dimensionality
of activities in a dynamic environment. The results show that
compared to benchmark methods, the proposed method
outperforms them in terms of service delay. In short, the
suggested method improves system efficiency with regard to
latency and power consumption, and it provides an effective
and realistic solution to the problems caused by fog computing
and the Internet of Things.

The drawbacks and research gap of the existing techniques are
mentioned in the upcoming section.

2.1 Ideology from the related works

What follows is an analysis of the problems found in the

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 5

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

recently published research on bio-inspired and current
metaheuristic load balancing systems:

(i) When allocating jobs to appropriate virtual machines, most of
the metaheuristic load balancing algorithms that were
evaluated did not structuralize the elements of quality of
service, service cost, and energy cost.

(ii) When it comes to resource allocation, the majority of the
metaheuristic load balancing methods that were studied fell
short when it came to creating a workable decision process that
requires several load balancing criteria to cooperate.

(iii) When allocating workloads to appropriate virtual machines
(VMs), the current hybrid metaheuristic loads balancing
algorithms had trouble striking a balance between exploration
and exploitation.

3. Resource optimisation problem and
motivation
In this section, we will examine the problem formulation and
the reasons behind creating the simulation in further detail.

3.1 Resource optimisation problem statement

With the (IoT), a wide diversity of tasks is possible, from
monitoring sleep to keeping tabs on daily activities. Wearable
and handheld devices are getting smarter and can link to social
media accounts and monitor data, which improves people's
lives. However, there are a lot of data transport and storage
issues that come along with all this activity. A big data
environment is being planned in the hopes of an interconnected
world with a hundred-fold increase in user data-rate and
connected devices, a tenfold increase in battery life for massive
machine communiqué [32]. Problems with scalability, latency,
and compatibility grow dramatically with the addition of even a
single node leading to underappreciated services. Within the
context of big data, there are two primary types of resource
optimization problems: allocation and scheduling. There have
been several attempts to optimize the Internet of Things (IoT),
but most of these studies are either domain-specific or place
too much emphasis on resource allocation at the expense of
resource scheduling. Examples of domain-specific literature
include studies devoted to healthcare job scheduling and
management [33–34], transportation task offloading and
scheduling [35], and industrial automations [36]. It is safe to
state that there has not been complete adoption and
implementation of a universal IoT framework that can be used
in all IoT scenarios. With the correct strategy, optimizing
resources can make docile to user expectations, which is a big
step toward easing the complexity of popular IoT systems. In
response to these issues, this study presents a new resource
optimization technique that may be used in different Internet of
Things settings.

3.2 Motivation and lapses

The Internet of Things (IoT) and value-added services generate
and consume vast amounts of data; as a result,
multidimensional optimization problems, such as how to choose
the best service configuration in real-time and how to provide
an efficient scheduling scheme for edge services, demand
substantial research and development efforts [37]. Other issues
with the dynamic resource allocation (DRA) method include the
high IoT-based cloud systems and the resource under-
utilization problem. Because of their limited storage and power
capabilities, the edge nodes exacerbate the security flaws
introduced by the decentralized nature of the Internet of Things'
topology. An effective resource optimization strategy that gives

equal weight to scheduling and resource allocation is required
to avoid these mistakes. There are a number of critical areas
that need a breakthrough, including the algorithms' ability to
satisfy users' demanding requirements (QoE besides QoS) and
the longevity of edge nodes, particularly sensor nodes.

4. Proposed methodology

As the energy consumption (EC) paradigm promotes processing
data closer to the source of creation, minimizing the amount of
data transfers between devices and a centralized node, it
enhances security and quality assurance. Using clustering
techniques appropriately cuts latency in half, allowing IoT
devices to complete [38]. This paper takes ZOA, an optimization
technique, a step further by incorporating clustering aspects. In
order to address the question of theories are practical for
managing and optimizing resources in an internet of things
(IoT) setting, this paper presents an algorithm that combines
elements of the EC paradigm with the zebra optimization
algorithm. This algorithm can solve scheduling and resource
distribution problems in the IoT, and it is relatively secure. As a
result, it provides an efficient method for optimizing resources
in an IoT setting.

By allocating requests/tasks a time slice/quantum time based
on their size without prioritizing requests, the suggested
algorithm guarantees that all requests find an economical
allocation of resources, which in turn provides the best
presentation in terms of regular time. Lastly, the suggested
system enables the distribution of requests to available
resources according to the size of resources. Optimizing
resources for the Internet of Things is further enhanced by this
allocation criterion. When allocating resources, the quantum
time is considered. In this context, we will use the symbols Q for
quantum time, TTS for the total task size that the edge nodes
have allocated for execution, and TR for the transfer rate. If
resource is Q (i , j), the task size is TS (i , j), and the transfer rate
is TR (i , j), then be expressed as:

TAT = TS (i , j)
TR (i , j)

× Q (i , j) (1)

where Q (i , j) is defined as:

Q = TS (i , j)
TR (i , j) (2)

as well as TTS stands for total task size, which is the total of all
tasks' (ST) awaiting resources. The authors of this work set out
to fill this knowledge vacuum by creating an optimizer that
mimics the hunting and defensive behaviors of zebras. The
zebra is a member of the ZOA population, which is an optimizer
for populations. Mathematically speaking, the plain where the
zebras are problematic, and each zebra characterizes a
potential solution to the tricky.

Decision variable values are based zebra is located in the search
space. As a result, the problem variables may be represented by
the elements of a vector, and each zebra in the ZOA can be
represented by this vector. A zebra population can be expressed
as a matrix. The zebras are first placed in the search space at
random. Equation (3) specifies the ZOA population matrix:

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 6

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

X = [
X1

⋮
Xi

⋮XN
]

N ×m

(3)

where X is the zebra populace, Xi is the ith zebra, xi ,j is the
worth for the j -th problem variable projected by the ith zebra,
N is the sum of populace members (zebras), besides m is the
sum of decision variables.

The optimization issue has several potential solutions, and each
zebra stands for one of them. Thus, the goals function may be
assessed using the suggested the variables in the issue. In order
to provide the values of the goal function as a vector, we use Eq.
(4):

F = [
F1

⋮
Fi

⋮FN
]

N ×1

= [
F (X1)

⋮
F (Xi)

⋮F (XN)
]

N ×1

(4)

the i -th zebra's objective function value (Fi) and the vector of
values (F) are defined. Finding solution to a problem is as simple
as comparing the values acquired for the objective purpose; this
will examine the quality of each potential solution and reveal
which one is the best fit. When solving a minimization problem,
the optimal solution is the answer that has the lowest objective
function value. Alternatively, in maximizing issues, the optimal
candidate is the one that has the highest objective function
value. The ideal candidate solution needs to be found in each
iteration since the zebra locations and, by extension, the values
of the goal purpose, are updated throughout each iteration.

Members of the ZOA have been date by studying two zebra
behaviors that occur in nature. Two examples of this kind of
conduct are:

(i) Foraging, and

(ii) Defense strategies in contradiction of predators.

Therefore, in each repetition, members of the ZOA populace are
updated in two dissimilar stages.

Phase 1: Foraging behavior

Initially, the population is revised according to zebra forage-
hunting behavior models. Zebras typically consume a diet of
grasses and sedges, although they will also eat buds, fruits,
bark, roots, and leaves if their preferred foods become limited.
Between sixty and eighty percent of a zebra's time is devoted to
feeding, depending on the quantity and quality of grass [38].
One kind of zebra is the plains zebra. This pioneer grazer clears
the way for other zebra species that rely on grasses by feeding
on the canopy of taller, less nutritious grass. As the pioneer
zebra, the top performer in a population guides the others to its
location in the search space in ZOA. So, utilizing Eqs. (5) and (6),
we can mathematically simulate the process of zebras changing
their phase

xi ,j
new ,P 1 = xi ,j + r . (PZj − I . xi ,j) (5)

Xi = {Xi
new ,P 1, Fi

new ,P 1

Xi , else
(6)

where xi ,j
new ,P 1 is the new position of the ith phase, xi ,j

new ,P 1 is its

jth dimension charge, Fi
new ,P 1 is its value, PZ is which is the

dimension, r is a random sum in interval [0;1], I = round (1 +
rand), where rand is a random sum in the intermission [0,1].
Thus, I ∈ {1, 2) besides if limit I = 2, then there are much more
vicissitudes in populace movement.

Phase 2: Defense policies against predators

Phase two involves updating the search space position of ZOA
population members using strategy against predator assaults.
Even though lions are the most common predators of zebras,
other animals such as leopards, cheetahs, brown and spotted
hyenas, wild dogs, and wild dogs pose a threat as well [39].
Another animal that zaps zebras when they get near water is
the crocodile. The way zebras defend themselves differs in
response to different predators. In order to evade a lion's
assault, a zebra would often run in a zigzag pattern or make
erratic, sideways turns. When smaller predators like hyenas and
dogs ambush a hunter, the zebras respond by becoming more
combative. Assumption number one in the ZOA design is that
the subsequent two events occur with equal likelihood:

(i) In the first scenario, the zebra anticipates an assault from a
lion and plans an escape; in the second scenario, additional
predators target the zebra, and it decides to take the offensive.

When lions attack zebras, the initial tactic is for the zebras to try
to flee from where they are right now. Thus, this tactic may be
exactly characterized by the style S1 in Eq. (7). Second, when
other predators attack a zebra, the rest of the herd will rush up
to the wounded animal, forming a protective structure in an
effort to confuse and terrify the assailant. Mathematically, this
zebra tactic is characterized by mode S2 in Eq. (7). In the process
of repositioning zebras, a new location is considered valid if it
recovers the charge of the goal function. Using Eq. (8), we can
simulate this update condition:

xi ,j
new ,P 2 = {S1:xi ,j + R . (2r − 1) . (1 − t

T) . xi ,j Ps ≤ 0.5

S2:xi ,j + r . (AZj − I . xi ,j) , else
(7)

Xi = {xi ,j
new ,P 2, Fj

new ,P2 < Fi

Xi , else
(8)

where xi ,j
new ,P 2 is the novel status based on second phase, xi ,j

new ,P 2

is its jth dimension value, Fi
new ,P2 is its objective function charge.

After the first two phases of a ZOA iteration, the population
members are updated to finish the iteration. Updates to the
algorithm population are carried out in accordance with Eqs. (5)
to (8) until the algorithm is fully implemented. Over the course
of several rounds, the optimal candidate solution is refined and
stored.

Phase 3: Computational complexity

Here we take a look at how complicated ZOA is to compute.
When preparing to use ZOA, the time complexity is O (N ⋅ m),
where N is the total sum of zebras and m is the sum of variables
in the problem. ZOA incorporates the iteration count T such
that every member of the population undergoes bi-phase
updates and objective function evaluations in each iteration.
Computing this update procedure has complexity of O (2 ⋅ N ⋅
m , ⋅ T), . Therefore, ZOA's overall computational complexity is
O (N ⋅ m ⋅ (1 + 2 ⋅ T)). The roadmap of the projected perfect is
exposed in Figure 1.

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 7

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

Figure 1. Workflow of the projected scheduling scheme

 The planned pipeline has been dissected and its process is
shown in Figure 1. Big data environment mobile user devices,
base stations, cloud nodes, and fog nodes make up this system.
The scheduler's steps for the suggested strategy are as follows:
(1) A appeal is sent to the fog node with the mobile data. This (2)
creates the fog node and sends the job to the main station. (3)
The base station estimates, schedules, and assigns tasks to the
nodes in the cloud. (4) At a certain interval, the cloud node will
submit the completed job. Users start the process, and nodes in
the cloud and fog keep in touch with each other. The job that
was passed from the fog node is collected by the station. After
receiving the job, the base station breaks it down into its
component parts, makes an estimate, and then provides the
aggregate result. The findings are combined by the base station
once the work is decomposed. The task is then scheduled and
sent. At a certain moment, the aggregated outcome is applied
in the base station. Users get the final, combined result when it
is computed. The request is sent to the fog node using the
suggested architecture, which uses the smartphone network.
After leaving the fog node, the job is directed to station.
Through the base station, the job is sent and received. The base
station sends the deconstructed job to the cloud node. The work
is done in the cloud node, and then the output is performed.
The reconfiguration agent comes after the architectural step.

4.1 Reconfiguration agent

When the judgment unit uses the most recent state
characteristics to create a reconfiguring activity. At each T step,
the RA reaps the advantages of both the prior reconfiguring
activity and the transactions that came before it. Rearranging
the reconfiguring action is done using the reconfiguration
agent. Using the reconfiguration agent, the reconfiguring
procedure may be rearranged. Here we will go over the steps to
create the reward, training, and state components.

4.1.1 Reward
Keep in mind that reducing the total delay cost for all network
jobs is the objective of the problem being researched. Reducing
the total cost of delay should be the goal of any reconfiguration
effort. What this means is that every reconfiguration procedure
has to keep the total cost of configuration step to a minimum.
Maximizing the cumulative reward for an episode is the goal of
a deep learning agent. So, the compensation for each
reconfiguration phase is defined as the inverse of the tardy was
just applied per second at that stage.

In one stage, employing both buffer jobs and finished tasks, the

timeliness cost is generated. During a reconfiguration process,
allow each completed job to be transformed. When a present
finished. R′ besides r″ are the starting and end duration of the
contemporary reconfiguration stage, singly. Consequently, the
period step [r′, r″] reward is exposed in Eq. (9):

RR = 1
r′ − 1

r″ [∑x =0

N

∑
y =0

O

∝y

Cy
(r′ − max (r′, ly))] + [∑y =0

N

∝y

Cy
(r′ −

max (r′, ly))]
(9)

 The first and ultimate stages of reconfiguration are denoted as
r′ and r″, respectively. The reconfiguration judgment awards
and distributes the cumulative prizes from each episode. What
follows is an explanation of the reconfiguration judgment.

4.1.2 Reconfiguration judgment

To decide whether to reorganize, the reconfiguration judgment
is activated when the initial device finishes a job. Only when the
RA wants to decide to reconfigure does it do so. With the help of
the reconfiguration judgment system, human reconfiguration is
reduced in frequency. In any case, the RA will need a lot of
practice events before it figures out how to make
reconfigurations less frequent.

Let t′ = 0, 1, 2, ⋅ ⋅ ⋅ , N characterize the existing manufacture
mode and wt′ signify its buffer. The present scheme time is
designated by t′, rc . The x ’s current area tardy cost is
represented by βx , where the moment in time is defined by
current cost. The Eq. (10) represents the current cost

βx = { ∝y rc > ly

∝y

Cy
r′ > ly > r″

0 else

(10)

 At the three main decision unit makes a decision to represented
as rc , queue is represented as ly . The cost function is signified
as r′ and r″. A combination of the task's beginning and end
values, as well as its current computation cost, yields the final
result.

Case 1: When wt′ is blank.

Case 2: When βy is slighter than the xth % unresolved task in wt′
here, β is a list βy is the mean of the contemporary unit y

βy = 1
N ∑

x =0

N

βx
(11)

 The mean spoken as βx , and the entire sum of examples
obtainable is represented as N .

Case 3: When wt′ and N additional tasks have been processed
and βy is less than y% of β . Pay attention to the fact that every
attribute of a state is an array. To accurately reproduce the
qualities of the underlying data, the standard error, mean,
minimum, and maximum are calculated for each state attribute.
Hence, the state vector is 16 dimensions long (4 × 4). We use
min-max normalizing for state attributes. Equation (12)
expresses the inverse of state feature Ft″, Ft″.

https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image1.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image1.png

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 8

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

Ft″ = Ft′ − max (Ft′)
max (Ft′) − min (Ft′)

(12)

 The functions are characterized as min (⋅). The collection of
altogether Ft′ without resampling aeras is characterized by Ft″ in
this circumstance. For the reserve Ft″, the max-min algorithm
gives advanced importance to task Ft″ than tasks. With max-min,
numerous minor processes may operate in tandem with the
bigger ones. Finishing the longest work first will establish the
total timeframe [40]. A reduction in cost delay episode earns RA
as a reward. Because of the reconfiguration decision, human
configuration is diminished. Deep learning employs an effective
preparation agent to plan the job after the device
reconfiguration phase is over. The scheduling agent's job is to
pick the best resource and service combination for each new job
that comes up.

5. System requirements analysis

The computerized large data processing system's primary
features are, among other things, the ability to access data
sources, process data streams, and support for individualized
data processing rules. Separate introductions to these modules
are forthcoming.

Access the data source
With this system, you may obtain data from a wide range of
sources, the majority of which are online but also include offline
options. Some applications need processing both online and
modest amounts of offline data, even if the system is designed
to process data streams online. The data will be stored offline in
HDFS by the system. The system organizes and categorizes data
stored online according to topics; users have the option to
enable data loss in order to enhance application performance.
Lastly, data goes into the following processing data Low once a
job to a data source.

Data stream processing

Different use cases call for different data stream processing
logic. The system may now accommodate many types of data
processing logic thanks to a functional component that
summarizes typical data processing procedures. As a result, all
the user has to do is combine the necessary functional
components in a flexible way and indicate their topological
connection.

Data storage: Procedures for data streams to persist. Back
both classic MySQL and key-value HBase databases.

Data statistics: Produce broad statistics regarding the data
flow. Sum, count, average, and max/min are the aggregation
functions that are supported.

Data collection: Data stream matching, data collection from
the field, and output should be done periodically. In addition,
you may select the sorts of fields and give them names.

Data Filtering: Restrict the flow of data. By implementing
logical operations (such OR besides AND) on the consequences
of corresponding several fields, filtering rules can reveal data
that fits the constraints. These operations include regular,
range, precise, and fuzzy matching for a field.

According to Table 1, the experimental setup consists of four
Swarm nodes: one master node and three worker nodes. Using
the NGINX service, the Swarm instructions are executed on the
master node. Schedules, DNS service discovery, scalability, and
container load balancing are all handled by Swarm itself on all

nodes. Each node in the Swarm will have its own copy of the
load balancer, which will distribute requests among them as
needed.

Table 1. Swarm services for big data request

Type Port Container
Load Balancer 80 NGINX

Front End PHP service 8080 Apache
API server (Python) 5000 Python
API server (Redis) 6379 Redis

6. Result and discussion
The details of the projected cloud environment are detailed in
the simulated environment, and the performance matrices
cover each key matrix. Present scheduling and load-balancing
methods are contrasted with the suggested method in the
comparative analysis section. The jobs utilized in this project
range from one hundred to five hundred. Figures 2 to 6
demonstrate comparisons between the suggested model and
many current methodologies, including the Butterfly
optimization Algorithm (BOA), the Stray Lion optimization
Algorithm (SLOA), and the mother optimization Algorithm
(MOA).

Figures 2 through 6 illustrate the performance of various
parametric metrics in relation to distinct tasks. The analysis of
the BOA model yielded the following results for 100 tasks:
makespan = 482, energy consumption = 51.6157, balanced CPU
utilization = 0.0168, optimized memory utilization = 5313.61,
and prioritization = 5930. Subsequently, the 200th task was
executed, with a duration of 1091 iterations, an energy
consumption of 66.6182 ± 0.02087, optimized memory usage of
5404.47, and prioritization of 29,800. Subsequently, the 300th
task was executed, with a duration of 1788 seconds, an energy
consumption of 81.9739, balanced CPU utilization of 0.0202,
optimized memory utilization of 5473.9, and prioritization of
44,850. The 400th task was completed with a duration of 2902
instructions, an energy consumption of 84.1332, balanced CPU
utilization of 0.0935, optimized memory utilization of 5619.42,
and prioritization of 49,800. Following that, the 500th task was
executed with a duration of 2457 iterations, an energy
consumption of 96.9864, balanced CPU utilization of 0.0126%,
optimized memory utilization of 5721.11, and prioritization of
52,750.

Figure 2. Visual representation of different models

https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image2.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image2.png

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 9

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

Figure 3. Graphical description of various models

Figure 4. Analysis of different optimization models

Figure 5. Visual presentation of proposed model with existing procedures

 Subsequently, the SLOA model assigns the following values to
the 100 tasks: span (100,506, 66.1581), balanced CPU utilization
(0.02424), optimized memory utilization (6029.24), and
prioritization (5950). The 200th task had a duration of 1097
iterations, an energy consumption of 69.6314, a balanced CPU
utilization of 0.01473, optimized memory utilization of 6380.03,
and prioritization of 30,900. The 300th task had a duration of
1769 iterations, 74.8653 0.02096 energy consumption, and
balanced CPU utilization of 6573.92 45,850 correspondingly.
Following that, the 400th task was executed with a duration of
2154, an energy consumption of 75.9833, balanced CPU

Figure 6. Analysis of different optimization models for task prioritization

utilization of 0.04096, optimized memory utilization of 6879.92,
and prioritization of 50,697. Following that, the 500th task was
executed with a duration of 2365, a balanced CPU utilization of
78.7313, an energy consumption of 0.06096, an optimized
memory usage of 6943.92, and a prioritization of 53,954.

The MOA model then computes the makespan for the 100th
task to be 100 and the balanced CPU utilization to be 601
79.8525 0.03542 6125.37 6025. Then, the 200th task was
executed with a duration of 1165, an energy consumption of
80.3654 0.05649, and a balanced CPU utilization of 6596.32
42,238. Subsequently, the 300th task was executed with a
duration of 1874 82.9542, optimized memory usage of 0.02465,
balanced CPU utilization of 6685.68, and prioritization of 63,375.
Then, the 400th task was executed with a duration of 2187, an
energy consumption of 84.743 x 0.02546 x 6896.74, and a
balanced CPU utilization of 64,481. Then the 500th task, with the
following priorities: optimized memory usage (7098.32),
makespan (2396 x 86.9845 x 0.03621), and prioritization
(66,598).

The ZOA model then calculates the makespan for the 100th task
to be 100 299 42.7248 0.00338 4893.05 and the balanced CPU
utilization to be 6950. Then, the 200th task, with a duration of
1013 45.1718, balanced CPU utilization of 0.00461, optimized
memory utilization of 4915.5, and prioritization of 50,900, was
executed. The 300th task was completed with a duration of
1546 iterations, an energy consumption of 48.2737, balanced
CPU utilization of 0.00125, optimized memory utilization of
5085.77, and prioritization of 70,850. Following that, the 400th
task was executed, with a duration of 1972, an energy
consumption of 55,4123, balanced CPU utilization of 0.01240,
optimized memory utilization of 5241.27, and prioritization of
80,800. Following that, the 500th task was executed, with a
duration of 2015, an energy consumption of 61.9782 0.00934,
an optimized memory usage of 5383.95, and a prioritization of
81,750. The proposed model explains the results in terms of
makespan, energy consumption, task priortitization, memory
usage and balanced CPU utilization. In future work, the results
will be improved by adding resource utllization, number of
overloaded tasks, training time reduction, etc.

7. Conclusions and findings

Using ZOA to provide well-informed options for job situations
and reconfiguration, this article explored intelligent planning
task delivery. The problem is solved by providing a system
design that allows for careful planning and reconfiguration in a
big data setting. We create a quantitative approach to lower the
total cost of timeliness for all jobs. Furthermore, a model for
optimization is proposed that incorporates a timetable and

https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image3.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image3.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image4.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image4.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image5.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image5.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image6.png
https://www.scipedia.com/public/File:Draft_Veeramani_766149711-image6.png

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 10

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

agents that may be reconfigured. The agency's characteristics,
operations, and incentives are aimed at the two services. Using
cloud-edge computing in a big data setting, it claims to provide
a high-performance computing strategy that makes good use of
available resources and evenly distributes processing loads. The
suggested protocol also utilized the ZOA method to discover
effective keys with the best possible local besides global fitness
functions. In order to maintain a steady connection with little
latency, the fitness function makes use of the energy and
reliability aspects of the channel. On top of that, network edges
protect data storage and gathering from network risks while
small hardware devices are dispersed and limited incur little
costs. Based on the results of the experiments, it is evident that
the ZOA reduces energy usage by up to 18.74J compared to
other models like MOA, SLOA, and BOA. However, the proposed
model achieved low performance in minimizing the makespan
due to high interia weight of the proposed zebra optimization
algorithm. This must be addressed in future work and also tries
to minimize the high computational time.

7.1 Future Work
The future of this project depends on investigating and
resolving issues related to its computational complexity and
cost efficiency. Implementing the provided methodologies for
Big Data requests multi-cloud surroundings is also within the
realm of possibility.

Conflicts of interest: None

Submission declaration and verification: The work described
has not been published previously.

Authors’ contribution statement
Vijayaraj Veeramani conceived of the presented idea. Mr.
Vijayaraj Veeramani developed the theory and performed the
computations. Dr. M. Balamurugan – Professor, School of
Computer Science of Engineering, Bharathidasan University,
Tiruchirappalli and Dr. Monisha Oberoi – Director Security
Services Sales, IBM Innovation Services Pte Ltd. Verified the
analytical methods. All authors discussed the results and
contributed to the final manuscript.

References
[1] Abualigah L., Diabat A., Elaziz M.A. Intelligent workflow scheduling for big data
applications in IoT cloud computing environments. Cluster Computing, 24(4):2957-2976,
2021.

[2] Basu S., Karuppiah M., Selvakumar K., Li K.C., Islam S.H., Hassan M.M., Bhuiyan M.Z.A. An
intelligent/cognitive model of task scheduling for IoT applications in cloud computing
environment. Future Generation Computer Systems, 88:254-261, 2018.

[3] Bouhouch L., Zbakh M., Tadonki C. Online task scheduling of big data applications in the
cloud environment. Information, 14(5):292, 2023.

[4] Rjoub G., Bentahar J., Wahab O.A. BigTrustScheduling: Trust-aware big data task
scheduling approach in cloud computing environments. Future Generation Computer
Systems, 110:1079-1097, 2020.

[5] Nguyen B.M., Thi Thanh Binh H., The Anh T., Bao Son D. Evolutionary algorithms to
optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog
computing environment. Applied Sciences, 9(9):1730, 2019.

[6] Elhoseny M., Abdelaziz A., Salama A.S., Riad A.M., Muhammad K., Sangaiah A.K. A hybrid
model of internet of things and cloud computing to manage big data in health services
applications. Future Generation Computer Systems, 86:1383-1394, 2018.

[7] Li X., Wang L., Abawajy J.H., Qin X., Pau G., You I. Data-intensive task scheduling for
heterogeneous big data analytics in IoT system. Energies, 13(17):4508, 2020.

[8] Jalalian Z., Sharifi M. A hierarchical multi-objective task scheduling approach for fast big
data processing. The Journal of Supercomputing, 78(2):2307-2336, 2022.

[9] Islam T., Hashem M.M.A. Task scheduling for big data management in fog infrastructure.
In 2018 21st International Conference of Computer and Information Technology (ICCIT),
IEEE, pp. 1-6, 2018.

[10] Cai X., Geng S., Wu D., Cai J., Chen J. A multicloud-model-based many-objective
intelligent algorithm for efficient task scheduling in internet of things. IEEE Internet of
Things Journal, 8(12):9645-9653, 2020.

[11] Abohamama A.S., El-Ghamry A., Hamouda E. Real-time task scheduling algorithm for
IoT-based applications in the cloud–fog environment. Journal of Network and Systems
Management, 30(4):1-35, 2022.

[12] Boveiri H.R., Khayami R., Elhoseny M., Gunasekaran M. An efficient Swarm-Intelligence
approach for task scheduling in cloud-based internet of things applications. Journal of
Ambient Intelligence and Humanized Computing, 10:3469-3479, 2019.

[13] Rjoub G., Bentahar J., Wahab O.A., Bataineh A. Deep smart scheduling: A deep learning
approach for automated big data scheduling over the cloud. In 2019 7th International
Conference on Future Internet of Things and Cloud (FiCloud), IEEE, pp. 189-196, 2019.

[14] Priyanka E.B., Thangavel S., Meenakshipriya B., Prabu D.V., Sivakumar N.S. Big data
technologies with computational model computing using Hadoop with scheduling
challenges. In Deep Learning and Big Data for Intelligent Transportation: Enabling
Technologies and Future Trends, pp. 3-19, 2021.

[15] Xu X., Liu Q., Luo Y., Peng K., Zhang X., Meng S., Qi L. A computation offloading method
over big data for IoT-enabled cloud-edge computing. Future Generation Computer Systems,
95:522-533, 2019.

[16] Abd Elaziz M., Abualigah L., Attiya I. Advanced optimization technique for scheduling
IoT tasks in cloud-fog computing environments. Future Generation Computer Systems,
124:142-154, 2021.

[17] Narman H.S., Hossain M.S., Atiquzzaman M., Shen H. Scheduling internet of things
applications in cloud computing. Annals of Telecommunications, 72:79-93, 2017.

[18] Al-Turjman F., Hasan M.Z., Al-Rizzo H. Task scheduling in cloud-based survivability
applications using swarm optimization in IoT. In The Cloud in IoT-enabled Spaces, CRC
Press, pp. 1-32, 2019.

[19] Li C., Zhang Y., Luo Y. Neighborhood search-based job scheduling for IoT big data real-
time processing in distributed edge-cloud computing environment. The Journal of
Supercomputing, 77:1853-1878, 2021.

[20] Lu Z., Wang N., Wu J., Qiu M. IoTDeM: An IoT big data-oriented MapReduce
performance prediction extended model in multiple edge clouds. Journal of Parallel and
Distributed Computing, 118:316-327, 2018.

[21] Sun D., Zhang C., Gao S., Buyya R. An adaptive load balancing strategy for stateful join
operator in skewed data stream environments. Future Generation Computer Systems,
152:138-151, 2024.

[22] Sharma A., Balasubramanian V., Kamruzzaman J. A temporal deep Q learning for
optimal load balancing in software-defined networks. Sensors, 24(4), 1216, 2024.

[23] Zhu F. Cloud computing load balancing based on improved genetic algorithm.
International Journal of Global Energy Issues, 46(3/4):191-207, 2024.

[24] Chandrashekhar A.S., Chandrashekarappa N.M., Hanumanthagowda P.B., Bongale A.M.
Multi objective prairie dog optimization algorithm for task scheduling and load balancing.
International Journal of Intelligent Engineering & Systems, 17(2):585-594, 2024.

[25] Muneeswari G., Madavarapu J.B., Ramani R., Rajeshkumar C., Singh C.J.C. GEP
optimization for load balancing of virtual machines (LBVM) in cloud computing.
Measurement: Sensors, 33, 101076, 2024.

[26] Sundara Kumar M.R., Mohan H.S. Improving big data analytics data processing speed
through map reduce scheduling and replica placement with HDFS using genetic
optimization techniques. Journal of Intelligent & Fuzzy Systems, 46(1):1-20, 2024.

[27] Saba T., Rehman A., Haseeb K., Alam T., Jeon G. Cloud-edge load balancing distributed
protocol for IoE services using swarm intelligence. Cluster Computing, 26(5):2921-2931,
2023.

[28] Shahid M.A., Alam M.M., Su’ud M.M. Performance evaluation of load-balancing
algorithms with different service broker policies for cloud computing. Applied Sciences,
13(3), 1586, 2023.

[29] Al Reshan M.S., Syed D., Islam N., Shaikh A., Hamdi M., Elmagzoub M.A., Talpur K.H. A
fast converging and globally optimized approach for load balancing in cloud computing.
IEEE Access, 11:11390-11404, 2023.

[30] Javadpour A., Sangaiah A.K., Pinto P., Ja’fari F., Zhang W., Abadi A.M.H., Ahmadi H. An
energy-optimized embedded load balancing using DVFS computing in cloud data centers.
Computer Communications, 197:255-266, 2023.

[31] Bebortta S., Tripathy S.S., Modibbo U.M., Ali I. An optimal fog-cloud offloading
framework for big data optimization in heterogeneous IoT networks. Decision Analytics
Journal, 8, 100295, 2023.

[32] Thirumalraj A., Asha V., Kavin B.P. An Improved Hunter-Prey Optimizer-Based DenseNet
Model for Classification of Hyper-Spectral Images. In AI and IoT-Based Technologies for
Precision Medicine, IGI global, pp. 76-96, 2023.

[33] Shafique K., Khawaja B.A., Sabir F., Qazi S., Mustaqim M. Internet of Things (IoT) for
next-generation smart systems: A review of current challenges, future trends and prospects
for emerging 5G-IoT scenarios. IEEE Access, 8:23022-23040, 2020.

[34] Hameed Abdulkareem K., Awad Mutlag A., Musa Dinar A., Frnda J., Abed Mohammed
M., Hasan Zayr F., Lakhan A., Kadry S., Ali Khattak H., Nedoma J. Smart healthcare system for
severity prediction and critical tasks management of COVID-19 patients in IoT-Fog
computing environments. Comput. Intell. Neurosci., 2022:5012962, 2022.

[35] Lakhan A., Mohammed M.A., Elhoseny M., Alshehri M.D., Abdulkareem K.H. Blockchain
multi-objective optimisation approach-enabled secure and cost-efficient scheduling for the
Internet of Medical Things (IoMT) in fog-cloud system. Soft Computing, 26:6429-6442, 2022.

[36] Alatoun K., Matrouk K., Mohammed M.A., Nedoma J., Martinek R., Zmij P. A novel low-
latency and energy-efficient task scheduling framework for Internet of medical things in an
edge fog cloud system. Sensors, 22, 5327, 2022.

[37] Lakhan A., Mohammed M.A., Garcia-Zapirain B., Nedoma J., Martinek R., Tiwari P.,
Kumar N. Fully homomorphic enabled secure task offloading and scheduling system for

https://www.scipedia.com/public/Vijayaraj_et_al_2024a 11

V. Vijayaraj, M. Balamurugan and M. Oberoi, Balancing the load and scheduling the tasks using zebra optimizer in
IoT based cloud computing for big-data applications, Rev. int. métodos numér. cálc. diseño ing. (2024). Vol. 40, (2), 25

transport applications. IEEE Trans. Veh. Technol., 71:12140-12153, 2022.

[38] Trojovská E., Dehghani M., Trojovský P. Zebra optimization algorithm: A new bio-
inspired optimization algorithm for solving optimization algorithm. IEEE Access, 10:49445-
49473, 2022.

[39] Caro T., Izzo A., Reiner R.C., Walker H., Stankowich T. The function of zebra stripes.
Nature Commun., 5(1):1-10, 2014.
 [40] Pal S., Jhanjhi N.Z., Abdulbaqi A.S., Akila D., Alsubaei F.S., Almazroi A.A. An intelligent
task scheduling model for hybrid internet of things and cloud environment for big data
applications. Sustainability, 15(6), 5104, 2023.

