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Abstract
To develop a precise neural network model designed for segmenting ultrasound images of 
thyroid nodules. The deep learning U-Net network model was utilized as the main 
backbone, with improvements made to the convolutional operations and the 
implementation of multilayer perceptron modeling at the lower levels, using the more 
effective BCEDice loss function. The modified network achieved enhanced segmentation 
precision and robust generalization capabilities, with a Dice coefficient of 0.9062, precision 
of 0.9153, recall of 0.9023, and an F1 score of 0.9062, indicating improvements over the U-
Net and Swin-Unet to various extents. The U-Net network enhancement presented in this 
study outperforms the original U-Net across all performance indicators. This advancement 
could help physicians make more precise and efficient diagnoses, thereby minimizing 
medical errors.
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1. Introduction
Thyroid diseases, frequently characterized by nodular lesions, 
are prevalent in the general population. These thyroid nodules 
are lumps found within the human thyroid gland [1]. According 
to research statistics, the likelihood of discovering thyroid 
nodules in asymptomatic adults can be as high as 68%. Among 
these nodules, 7%-15% are eventually diagnosed as thyroid 
cancer, the fastest-growing type of malignant tumor [2], which 
significantly impacts individuals’ physical health.

Although thyroid nodule ultrasound imaging technology is 
mature, the quality of imaging cannot be guaranteed, and 
shortcomings such as blurred edges of thyroid nodules in 
images are unavoidable. Differences in the model and type of 
ultrasound equipment also lead to significant differences in the 
collected ultrasound images. Additionally, fine-needle aspiration 
biopsy surgery requires a large amount of medical and human 
resources and is somewhat invasive for patients. Therefore, this 
diagnostic method heavily relies on the subjective judgment of 
attending physicians, which can easily lead to misdiagnosis due 
to differences in doctors’ operational experience and 
techniques. Unnecessary biopsy surgeries can also cause 
patients more suffering. Therefore, improving the accuracy of 
segmentation for ultrasound images of thyroid nodules in 
computational fields will notably enhance the precision and 
efficacy of clinical diagnosis and treatment.

Addressing thyroid nodule segmentation, the U-Net model, as 
introduced by Ronneberger et al. [3], revolutionized deep 
learning techniques for medical image segmentation by 
integrating skip connections within its encoder-decoder 
architecture. This advancement marked a significant milestone, 
heralding a new era in the field. In a parallel development, Wu 

Junxia et al. [4] improved the network by introducing a multi-
dilation convolutional block. This enhancement enables more 
accurate segmentation of nodule regions, resulting in the 
creation of more precise binary masks for medical image 
segmentation. Hu Yishan et al. [5] introduced attention 
mechanisms for thyroid nodule segmentation, optimizing low-
dimensional features of images and preserving important 
features through the fusion of high and low-dimensional 
features. Zhao Kefu et al. [6] fused different feature layers with 
the U-Net as the backbone network and introduced SE attention 
mechanisms to further improve segmentation accuracy. Chu et 
al. [7] introduced a thyroid nodule segmentation network 
utilizing U-Net architecture, substantially enhancing 
segmentation accuracy with limited datasets, thereby effectively 
aiding physicians in diagnosing thyroid nodules. Oktay et al. [8] 
introduced the Attention-UNet, a novel network model designed 
to automatically prioritize targets of diverse sizes and shapes. 
This approach effectively accentuates significant features while 
mitigating attention towards irrelevant areas. Zhou et al. [9] 
developed the Deeply Supervised Encoder-Decoder UNet++ 
network. This diminishes the semantic disparity between the 
feature maps of encoder and decoder subnetworks. Meanwhile, 
Chen et al. [10] enhanced the DeepLabv3+ model by integrating 
a decoder module to refine segmentation outcomes and 
integrating depth-wise separable convolutions into both the 
spatial pyramid pooling and decoder modules. Badrinarayanan 
et al. [11] introduced the SegNet segmentation network. It 
symmetrically performs downsampling and upsampling. Many 
models adopt multi-stage segmentation methods, further 
increasing computational complexity, indicating the need to 
improve the segmentation speed of many thyroid nodule 
models.

Currently, the widely used deep learning neural network in 
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medical imaging is the U-Net network. However, U-Net still 
faces limitations in thyroid nodule segmentation, such as 
ineffective utilization of pixel-space information and long 
training times. The primary contribution of this paper is the 
research and development of an optimal network structure 
designed to accurately segment nodules in the thyroid region.

2. Relevant Work

2.1 U-Net Network
In 2015, Ronneberger and colleagues presented the U-Net 
architecture, which ingeniously integrated skip connections. 
This innovation marked a significant milestone in medical image 
segmentation through deep learning methodologies.

As illustrated in Figure 1, the U-Net network is distinguished by 
its architecture, which consists of three key components: an 
encoder, a decoder, and a bottleneck layer. The encoder is 
responsible for feature extraction and learning from the target 
object through four stages of convolutional and pooling 
operations, progressively decreasing the size of the feature 
maps. During the decoding process, the feature maps are 
upsampled to restore them to the original image size. 
Concurrently, the innovative skip connection algorithm 
integrates shallow and deep feature information. This 
architecture allows U-Net to effectively learn from small-scale 
datasets in medical imaging.

Figure 1 U-Net Network Architecture Diagram

2.2 Swin-Unet Network
Within the domain of medical image segmentation, the 
demands for precision are exceedingly high. While CNN 
segmentation algorithms have achieved significant 
advancements in recent years, they still fall short of the 
stringent criteria required for medical applications. To address 
this gap, the Swin-Unet network was introduced, merging the 
capabilities of U-Net with the Swin Transformer. Figure 2 
illustrates the comprehensive structure of this network.

Encoder Part: The Swin-Unet network significantly modifies the 
convolutional pooling operations of the original U-Net network, 
replacing them with multiple basic unit blocks from the Swin 
Transformer network. Each unit block in the network is capable 
of computing self-attention through local and global perception 
layers, allowing it to capture image features at various scales.

Decoder Component: Comparable to the U-Net architecture, 
Swin-Unet incorporates skip connections during upsampling, 
reinstating the reduced feature maps to the original image 
dimensions. However, the key distinction lies in replacing 
conventional convolutional operations with Swin Transformer 

blocks for feature learning.

Figure 2 Swin-UNet Network Architecture Diagram

3. Improved U-Net Network

The enhanced U-Net network presented in this paper 
intelligently integrates the traditional U-Net with elements from 
Swin-Unet. It utilizes the U-Net structure as the backbone, 
replacing its convolutional units with Swin Transformer Blocks 
derived from Swin-Unet. This integration allows for the effective 
combination of global and local contextual information, thus 
enhancing segmentation accuracy and robust generalization. 
Additionally, multi-layer perceptrons are employed at lower 
levels to model complex features, which significantly reduces 
both computational complexity and the number of parameters, 
while still maintaining high segmentation accuracy. The 
comprehensive framework of this model is showed in Figure 3.

Figure 3. Schematic of the Improved U-Net Network Structure
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3.1 Improved Network Composition

3.1.1 Encoder
In the encoder, traditional convolutional operations, typical in 
the U-Net network, are replaced with Swin Transformer Blocks 
from the Swin-Unet architecture to enhance feature learning. 
Following each operation, a patch merging layer is utilized for 
downsampling, reducing the size and channel count of the 
feature maps. Downsampling takes place at a factor of 2 during 
each operation, wherein elements are selected at fixed 
positional intervals along both row and column directions 
before being concatenated.

Distinguishing itself from traditional modules, the concept of a 
movable window is introduced into the improved network units. 
As shown in Figure 4, the structure diagram of a basic unit block 
is presented.

Each unit block within the network is configured to encompass 
layer normalization (LN), a multi-head self-attention mechanism 
(MSA), a residual connection, and two multilayer perceptrons 
(MLP). The block incorporates two types of attention 
mechanisms: a window-based multi-head self-attention 
mechanism (W-MSA) and a shifted window-based multi-head 
self-attention mechanism (SW-MSA) [12]. This design facilitates 
the employment of continuous unit blocks that utilize a movable 
window concept, enhancing the flexibility and effectiveness of 
the attention mechanisms in capturing varying spatial features.

Z l = W − MSA (LN (zl −1 ) ) + zl −1 (1)

zl = MLP (LN ( l ) ) + l (2)

Zl +1 = SW − MSA (LN (zl ) ) + zl (3)

zl +1 = MLP (LN ( l +1 ) ) + l +1 (4)

 In equations (1) and (2), l  and zl  represent the outputs of the 
(SW-MSA) module and the MLP module of the first block, 
respectively. The computational approach for self-attention is as 
follows:

Attention (Q , K , V ) = SoftMax ( QKT

d
+ B )V (5)

 In equation (5), Q,K,V ∈ RM2×d  represent the query, key, and 
value, respectively. M2 and d denote the number of patches in 
the window and the dimension of the query or key, respectively. 
The value is derived from the bias matrix ∈ R(2M −1)×(2M +1).

Figure 4. Schema of Swin Transfomer Block

3.1.2 Shifted MLP
During the shifted MLP stage, before tokenization, the first 
operation performed is to shift the axes of the convolutional 
feature channels, aiding the multilayer perceptrons in focusing 
solely on the positional features of the convolutional features. 
To introduce more locality into the originally entirely global 
model, a window-based attention mechanism is employed at 

this stage, enabling the model to better integrate both global 
and local feature information. As illustrated in Figure 5, the 
shifted MLP schematic depicts features moving across width 
and height within two blocks, dividing features into different 
partitions and shifting their positions along the specified axes.

Figure 5. Diagram of the Shifted MLP (Multilayer Perceptron)

3.1.3 Tokenized MLP Stage

In the tokenized MLP stage, features undergo an initial 
transformation and projection onto tokens, where the channel 
count is adapted to align with the number of tokens. This step 
ensures proper correspondence between feature dimensions 
and the token structure. Subsequently, the tokens are 
forwarded to the shifted MLP for cross-width movement. The 
entire process employs depth-wise separable convolution 
(DWConv) for the following reasons:

1. Depth-wise separable convolution is advantageous for 
encoding positional information of features. Experimental 
results indicate that convolutional layers in MLPs are sufficient 
for encoding positional information and outperform standard 
positional encoding in practical performance.

2. DWConv has fewer parameters, In the tokenized MLP stage, 
features are initially transformed and projected onto tokens, 
with the channel count adjusted to match the number of 
tokens.

The computational process of the tokenized MLP stage module 
involves:

Xshift = ShiftW (X ); TW =

&Tokenize (Xshift ),
 (6)

Y = f (DWConv ( (MLP (TW ) ) ) ) (7)

Yshift = ShiftH (Y ); TH =

&Tokenize (Yshift ),
(8)

Y = f (LN (T + MLP (GELU (TH ) ) ) ) , (9) (9)

3.1.4 Decoder
The decoder has a symmetric structure to the encoder, both 
composed of Swin Transformer block unit modules. The key 
distinction involves the use of patch expansion operations in the 
decoder, which essentially serve as the inverse of patch 
merging operations. This reversal process is critical for 
reconstructing the image from compressed features to its 
original dimensionality during the decoding phase. It performs 
upsampling operations on the features extracted by the 
decoder and reassembles the feature maps into higher-
resolution ones.

3.1.5 Skip Connection

Similar to most U-shaped network structures, skip connection 
operations fuse the feature information of downsampling and 
upsampling, effectively reducing information loss during 
downsampling to achieve better thyroid nodule segmentation.
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4. Experiment and Results

4.1 Experimental Dataset

The thyroid nodule ultrasound scan images used in this study 
are sourced from the publicly available TN3K (thyroid nodule 3 
thousand) dataset (Gong et al., 2021), which includes 3493 
ultrasound images with pixel labels. The dataset comprises 
high-quality nodule mask annotations from various devices and 
views.

4.2 Experimental Design

The experimental setup includes the following parameters: 
image dimensions are uniformly adjusted to 256×256×1, with an 
initial learning rate set at 0.0005, and a batch size of 8. The 
Adam optimizer is employed for model optimization. The 
models undergo training across over a span of 100 epochs.

The BCE loss function treats each pixel as an independent 
binary classification problem, calculating the loss for each pixel. 
It offers good and stable focus on individual pixels. While the 
Dice loss function demonstrates excellent experimental 
performance for small target objects, maintaining stable 
training results is challenging. Based on the above studies, this 
paper aims to balance stability and accuracy in thyroid nodule 
segmentation training. Therefore, the BCEDiceLoss is utilized 
during training, combining the advantages of both loss 
functions to achieve better experimental results.

The BCE (Binary Cross-Entropy) loss function is defined as 
follows:

LBCE(X , Y , Ŷ )↔ = 1
P ∑

ij

− (Rij log(Pij )) + (1 − Rij )log(1 − Pij )) (10)

 In equation (10), X represents the initial thyroid nodule image, Y 

the true labels, and Ŷ  the corresponding predicted labels.

The Dice loss function is defined as:

LDice(X , Y , Ŷ ) = 1 −

∑
ij

Pij Rij + ε

∑
ij

(Pij + Rij ) − ∑
ij

Pij Rij + ε

(11)

 In equation (11), a represents a smoothing coefficient, which 
prevents situations like zero denominators. The computation of 
BCEDiceLoss is as follows:

LBCEDice = αLBCE + (1 − α )LDice (12)

5. Results and Discussion

5.1 Evaluation Metrics
The evaluation metrics employed include the Dice coefficient, 
precision (P), recall (R), and F1-score. The Dice coefficient 
measures the similarity between sets. Values for the BCE loss 
function fall within the range of 0 to 1, with higher values 
denoting improved segmentation performance achieved by the 
model. Precision, recall, and F1-score provide additional insights 
into the accuracy and reliability of the segmentation.

The formula for calculating the Dice coefficient is as follows:

Dice = 2|A ∩ B |
|A | + |B | (13)

 In equation (13), A and B respectively represent the actual and 
predicted areas of the image.

The formulas for calculating precision (P), recall (R), and the F1-
score are as follows:

P = TP
TP + FP

(14)

R = TP
TP + FN

(15)

F1 = 2 × P × R
P + R (16)

5.2 Results and Analysis

5.2.1 Comparing the Training Effects of Different 
Loss Functions
The initial set of experiments aims to assess the training effects 
of the enhanced network model proposed in this paper, 
employing BCE, Dice, and BCEDice loss functions.

Table 1 Training Results with Various Loss Functions

Loss Function Dice P R F1

BCE 0.9016 0.9142 0.8959 0.9016

Dice 0.9031 0.9074 0.9044 0.9031

BCEDice 0.9062 0.9153 0.9023 0.9062

As shown in Table 1, based on the data analysis provided in the 
table above, it is apparent that for the enhanced neural network 
proposed in this paper, when trained using the BCE loss 
function, the Dice score is 0.9016, which represents the lowest 
score among the evaluated functions. However, when the 
model is trained using the Dice loss function, a slight 
improvement is observed compared to utilizing the BCE 
function, with the Dice score increasing to 0.9031.

When combining the BCE loss function with the Dice loss 
function for training thyroid nodule ultrasound images, 
experimental results show that compared to using each loss 
function individually, the combination of both yields the highest 
Dice coefficient, precision, and score, reaching 0.9062, 0.9153, 
and 0.9062, respectively. The results suggest that the enhanced 
U-Net network proposed in this paper demonstrates superior 
performance in balancing stability and segmentation 
effectiveness when utilizing the BCEDice loss function.

5.2.2 Comparison of Segmentation Performance 
of Different Networks
To further assess the effectiveness of the enhanced model 
presented in the study, the same dataset is used to train three 
distinct network models: U-Net, Swin-Unet, and the enhanced 
model. Subsequently, the segmentation accuracy is evaluated.

Table 2 Training Outcomes Across Different Algorithms

Network Dice P R F1

Swin-Unet 0.7322 0.7401 0.7524 0.7322

U-Net 0.8971 0.8913 0.9106 0.8971

Improved U-Net 0.9062 0.9153 0.9023 0.9062

 Based on Table 2, the Dice score of the Swin-Unet network 
reaches 0.7322, which is the lowest among the evaluated 
networks. The U-Net network achieves a Dice score of 0.8971, 
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presenting a notable improvement of 22.52% compared to 
Swin-Unet. After optimization, the enhanced neural network 
proposed in this paper achieves the highest Dice value of 0.9062 
and the highest accuracy of 0.9153. Compared to Swin-Unet, it 
demonstrates a substantial enhancement of 23.76% and 
23.67%, respectively. Furthermore, compared to U-Net, it also 
showcases improvements of 1.01% and 2.69%, respectively. In 
summary, the enhanced network proposed in this paper 
exhibits the most superior segmentation performance.

Figure 6 illustrates the segmentation outcomes attained with 
different neural networks using the same dataset. The 
enhanced U-Net network proposed in this study is evaluated 
alongside expert gold standards, Swin-Unet, U-Net, and other 
well-known network models. The segmentation results from the 
Swin-Unet network show jagged edges and less smooth nodule 
edge segmentation, leading to suboptimal outcomes. In the 
case of U-Net, there are evident under-segmentations with 
significant discrepancies in the segmented area of some 
nodules, resulting in inaccurate segmentation results. However, 
the use of the improved U-Net network introduced in this 
research produces smoother edges of the segmented thyroid 
nodules, and the edge contours more closely align with those of 
the expert gold standard. Moreover, the errors in shape and 
segmented area are smaller compared to those seen with U-Net 
and Swin-Unet. The findings suggest that the improved U-Net 
network provides superior performance in thyroid nodule 
segmentation.

（a）Original Image

（b）Expert Gold Standard

（c）Swin-Unet Segmentation Outcome
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（d）U-Net Segmentation Outcome

（e）Segmentation Results after the Improvements in this Study
Figure 6. Ultrasound Image Segmentation Results of Thyroid Nodules Using Different 

Networks

This paper presents a method that improves upon the original 
U-Net network by replacing the standard convolutional blocks 
in the U-Net architecture with Swin Transformer blocks. This 
modification introduces local-to-global self-attention 
mechanisms in the encoder, significantly improving the model’s 
ability to generalize robustly. Additionally, a tokenized 
multilayer perceptron module is integrated to effectively model 
features using multilayer perceptrons. Following downsampling 
in the encoder, features are efficiently tokenized and projected. 
Through the adoption of a parameter-efficient design, the 
model attains an optimal equilibrium between segmentation 
accuracy and computational efficiency.

6. Conclusion
This study provides an enhanced neural network derived from 
U-Net for the segmentation of thyroid nodule ultrasound 
images. The following enhancements are incorporated into the 
U-Net network:

1. Integration of unit modules from Swin Transformer into the 

model encoder for feature learning, enabling a self-attention 
mechanism from local to global.

2. Employing multilayer perceptrons (MLPs) at the lower levels 
for feature modeling, while considering the impact of model 
dimensions on parameter count and computational complexity 
in the overall design. This design choice reduces parameter 
count and improves segmentation speed and accuracy.

3. Combining the advantages of both BCE and Dice loss 
functions by using the BCEDice loss function, which balances 
stability and segmentation accuracy, further enhancing the 
model’s performance.

Experimental findings suggest that the enhanced network 
model proposed in this study attains superior segmentation 
accuracy metrics. Specifically, it achieves a Dice coefficient of 
0.9062, a precision rate of 0.9153, an average recall of 0.9023, 
and an average F1 score of 0.9.
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