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Abstract
In today’s world, analyzing nonlinear occurrences related to physical phenomena is a hot 
topic. The main goal of this research is to use the natural decomposition method (NDM) of 
fractional order to find an approximate solution to the fractional clannish random walker’s 
parabolic (CRWP) equation. The proposed method gives approximate solutions that are 
exceptionally near the exact solution without the complication that numerous other 
techniques imply. Banach’s fixed-point theory is used to investigate the anticipated issue’s 
convergence analysis and uniqueness theorem. To ensure that the suggested technique is 
trustworthy and precise, numerical simulations were conducted. The results are shown in 
the graphs and tables. When comparing the proposed scheme’s solution to the actual 
solutions, it becomes clear that the scheme is efficient, systematic, and very precise when 
dealing with nonlinear complex phenomena.
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1. Introduction
Fractional-order differential equations have received a lot of 
interest in recent years due to advances in the theory of 
fractional calculus and its applications in a wide range of fields. 
Fractional partial differential equations are becoming more and 
more common in engineering applications and many research 
fields. Fractional-order derivatives can be used to explain a 
variety of physical phenomena in mathematical biology, 
electromagnetic theory, fluid mechanics, signal processing, and 
engineering. Numerous real-life issues may be represented by 
ordinary or partial differential equations with fractional order 
derivatives in the areas of diffusion processes, viscoelasticity, 
electrochemistry, and relaxation vibrations. Fractional calculus is 
also used in fluid dynamics, stochastic dynamical systems, 
controlled thermonuclear fusion, plasma physics, turbulence, 
nonlinear control theory, optical fibers, solid-state physics, 
chaos, fractal dynamics, finance, image processing astrophysics, 
etc. [1-7].

Finding exact solutions to the nonlinear fractional differential 
equations is crucial to understanding the wave phenomena they 
represent. The nonlinear fractional partial differential equations 
cannot be solved using a generic approach. Also, in recent 
decades, many successful techniques have been used to find 
approximate and exact solutions to these equations, such as the 
first integral method [8], modified Kudryashov method [9], 
generalized Kudryashov method [10], trial equation method 
[11], exp-function method [12], sub-equation method [13], 
improved sub-equation method [14], modified simple equation 
method [15], improved (G/G)-expansion method [16], sine-
Gordon equation expansion method [17], extended sin-Gordon 
equation method [18], extension exp(())-expansion method [19], 
improved tanh function method [20], and adomian 
decomposition method (ADM) which is a more popular 

technique due to its precision and efficiency [21-22]. ADM has 
been successfully and efficiently used to investigate the issues 
that have emerged in science and technology without 
perturbation and linearization. On the other hand, ADM needs a 
lot of time and a lot of computer capacity in order to do 
calculations. As a result, the integration of this technique with 
other transform methods is almost guaranteed. So Rawashdeh 
and Maitama proposed the fractional natural decomposition 
method (FNDM) [23-24], which is a combination of the ADM and 
natural transform method (NTM). Since FNDM is an amended 
method of ADM, it reduces calculation time and doesn’t need 
linearization discretization, or perturbation.

The time-fractional clannish random walker’s parabolic (CRWP) 
equation [25-27] is developed for the mobility of two interacting 
populations that have a tendency to be clannish, that is, they 
prefer to dwell with others of their own kind. This equation is 
written as:

∂ϵ φ (x , τ )
∂τϵ = ∂2φ (x , τ )

∂x2 − 2αφ (x , τ ) ∂φ (x , τ )
∂x + ∂φ (x , τ )

∂x ,

0 < ϵ ≤ 1

(1)

where ϵ  is the time fractional derivative. There are a few 
publications available about this equation. In 2007, Ugurlu and 
[28] considered the developed tanh function technique to 
discover some exact solutions to the CRWP equation. In 2013, 
Bulut [27] solved the CRWP problem using hyperbolic functions 
with the Kudryashov technique. Many novel solutions have been 
found by Odabasi and Misirli [29] by using the modified trial 
equation technique. Guner et al. [30] used two efficient 
techniques, namely the (G’/G,1/G)-expansion method and the 
(G’/G)-expansion method. In 2019, Dipankar Kumar and Samir 
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Chandra Ray [31] investigated novel exact solutions of the 
CRWP equation utilizing an expanded version of the Exp (−φ(ζ))-
expansion technique in the sense of conformable fractional 
derivative. By using the fractional natural decomposition 
technique (FNDM), this article finds approximate analytical 
solutions to the (CRWP) equation and compares them to the 
exact solutions.

The remainder of this article is arranged according to the 
following: In Section 2, we explain the basic concept of 
fractional calculus and certain preliminaries that pertain to our 
work. A fractional natural decomposition method (FNDM) is 
discussed in Section 3. The convergence analysis of NDM is 
discussed in Section 4. In Section 5, we will solve the (CRWP) 
problem using the technique described above. To conclude, 
there is an explanation of the major findings and a comparison 
of them to their exact solutions.

2. Preliminaries to FC
This section contains enough information to recognize 
fractional calculus theory. Throughout the previous two 
centuries, numerous different concepts of fractional calculus 
have been proposed. Including Hadamard fractional integral, 
Riemann-Liouville fractional derivative, Conformable fractional 
derivative, Caputo-Fabrizio fractional derivative, Yang-Gao-
Machado-Baleanu fractional derivative and Caputo fractional 
operator. 

Definition 1
The time-fractional integral of the Riemann-Liouville operator is 
given by Podlubny [32]

J0
ϵ φ (τ ) =

{ 1
Γ(ϵ + 1)

∫
0

τ

φ (τ ) (dτ )ϵ = 1
Γ(ϵ )

∫
0

τ

(τ − υ )ϵ −1φ (υ )dυ , τ , ϵ > 0,

φ (τ ) , ϵ = 0.

(2)

Definition 2
The time-fractional derivative of Caputo operator is given by 
Podlubny [32]

D∗ϵ φ (τ ) =

{ dk

dτk φ (τ ) , ϵ = k ∈ N ,

1
Γ(k − ϵ )

∫
0

τ

(τ − υ )k −ϵ −1φ(k ) (υ )dυ , k − 1 < ϵ ≤ k ∈ N .

(3)

Definition 3
The Mittag-Leffler of Eϵ (τ )  is given by Mainardi [33]

Eϵ (τ ) = ∑
i =0

∞

τi

Γ( iϵ + 1)
(4)

Definition 4
The natural transform (NT) is given by

N+ {ω (θ )} = ∫
−∞

∞
e−sθ ω (zθ )dθ , s , z ∈ ( − ∞, ∞) . (5)

Definition 5
The natural transform has the following impact on the Caputo 
operator given aby Loonker and Banerji [34]

N+ {Dϵ φ (τ ) } = qϵ

sϵ N+ {φ (τ ) } − ∑
i =0

n −1

qi −ϵ

si +1−ϵ
[Di φ (τ ) ]τ =0,

n − 1 < ϵ ≤ n .

(6)

3. Construction of fractional NDM
The following examples demonstrate how the recommended 
approach is based on the theory and method for solving 
fractional nonlinear partial differential equations:

Dτ
ϵ φ (x , τ ) + Rφ (x , τ ) + Fφ (x , τ ) = ℏ (x , τ ) , n − 1 < ϵ ≤ n , (7)

with the initial condition

φ (x , 0) = v (x ) , (8)

where the Caputo operator of φ (x , τ )  is denoted by Dτ
ϵ = ∂ϵ

∂τϵ , 
the linear function is denoted by R , the non-linear function is 
denoted by F  and the source term is denoted by ℏ (x , τ )  . 
Applying the NT to Eq. (7) and employing definition 5, we obtain

N+ [φ (x , τ ) ] = qϵ

sϵ ∑
i =0

n −1

qi −ϵ

si +1−ϵ
[Di φ (τ ) ]τ =0 + qϵ

sϵ N+ [ℏ (x ,

τ ) ] − qϵ

sϵ N+ [Rφ (x , τ ) + Fφ (x , τ ) ] .

(9)

 Applying the inverse NT to the previous equation, we get

φ (x , τ ) = H (x , τ ) + N−{ qϵ

sϵ N+ [ℏ (x , τ ) − Rφ (x , τ ) −

Fφ (x , τ ) ] } .
(10)

H (x , τ )  exists from the provided initial condition and 
nonhomogeneous term. Let’s suppose that an infinite series 
solution has the form

φ (x , τ ) = ∑
n =0

∞

φn (x , τ ), Fφ (x , τ ) = ∑
n =0

∞

An , (11)

where An  denotes the nonlinear term of Fφ (x , τ )  , then we get

∑
n =0

∞

φn (x , τ ) = H (x , τ ) + N−{ qζ

sζ N+ [ℏ (x , τ ) − Rφ (x , τ ) −

Fφ (x , τ ) ] } .

(12)

 Ultimately, the analytical solutions are presented in the 
following form
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φ (x , τ ) = ∑
n =0

∞

φn (x , τ ) . (13)

4. Convergence analysis of NDM

The existence and uniqueness theorems are tools for 
determining that to an issue problem, there is a unique solution 
that meets a particular guess condition.

Theorem 1
Wherever χ ∈ (0, 1)  , the solution given by NDM for the CRWP 
equation is unique where

χ = {φ2 − 2cφ (X + Y ) + φ }Ξ (14)

Proof
The CRWP equation has an analytical solution, which is as 
follows

φ (x , τ ) = ∑
j =0

∞

φj (x , τ ) , (15)

where

φm +1 (x , τ ) = N−{ ϕ (x )
s } + N−{ ( qϵ

sϵ )N+[ (φm )xx −

2α∑
i =0

m

φi (φm −i )x + (φm )x ] } .

(16)

 Suppose that φ  and are two solutions to the CRWP equation 
with |φ | ≤ X  and | | ≤ Y , then use of the aforesaid equation, 
we get

|φ − φ⋄ | = |N−{ ( qϵ

sϵ )N+[ (φxx − φ⋄ xx ) − 2α (φ −

φ⋄ ) (φx − φ⋄ x ) + (φx − φ⋄ x ) ] } | .
(17)

 We have used the convolution theorem for natural transform to 
get the following

|φ − φ⋄ | = ∫
0

τ

{ |φ2x − φ⋄ 2x | − 2α | (φ − φ⋄ ) (φx + φ⋄ x ) | + |φx − φ⋄ x | } (τ − ϕ )ϵ

Γ(ϵ + 1)
dτ .

≤ ∫
0

τ

{ ∂2

∂x2 |φ − φ⋄ | − 2α |φ − φ⋄ | ∂
∂x |φ − φ⋄ | + ∂

∂x |φ − φ⋄ | } (τ − ϕ )ϵ

Γ(ϵ + 1)
dτ .

≤ {φ2 |φ − φ⋄ | − 2αφ (X + Y ) |φ − φ⋄ | + φ |φ − φ⋄ | } τϵ +1

Γ(ϵ + 2)
,

(18)

where φn = ∂n

∂xn , n = 1, 2. The integral mean value [35] is used to 
simplify the preceding equation, as shown below

|φ − φ⋄ | ≤ {φ2 |φ − φ⋄ | − 2αφ (X + Y ) |φ − φ⋄ | + φ |φ − φ⋄ | }Ξ .

≤ χ |φ − φ⋄ |,
(19)

∴ (1 − χ ) |φ − φ⋄ | ≤ 0. Since 0 < χ < 1, therefore |φ − φ⋄ | = 0, 

which gives φ = φ⋄ , where φ = τϵ +1

Γ(ϵ + 2)
. As a result, the 

analytical solution is unique.

Theorem 2
Assume the following

∥ F (φ ) − F (s ) ∥ ≤ χ ∥ φ − s ∥ , ∀φ , s ∈ B , χ ∈ (0, 1) , (20)

where B  is a Banach space with F :B → B . The fixed-point 
principle of Banach [36] and the previous theorem were used to 
deduce that F  has a fixed point. Furthermore, the analytical 
solution produced with the suggested process is converging 
with a random election for φ0, s0 ∈ B  to a fixed point of F  and

∥ φμ − φσ ∥ ≤ χϕ

1 − χ ∥ φ1 − φ0 ∥ . (21)

Proof
Presume that B  a Banach space (C [ J ] , ∥ . ∥ )  . Now we shall 
confirm that {φμ }  is a Cauchy sequence in Banach space, by 
doing the following

∥ φμ − φσ ∥ = max⏟
ϕ ∈J

|φμ − φσ |

= max⏟
ϕ ∈J

|N−{ ( qϵ

sϵ )N+[ ( ∂2φμ −1

∂x2 −
∂2φσ −1

∂x2 ) − 2α (φμ −1 − φσ −1 ) ( ∂φμ −1

∂x −
∂φσ −1

∂x ) + ( ∂φμ −1

∂x −
∂φσ −1

∂x ) ] } |
≤ max⏟

ϕ ∈J
[N−{ ( qϵ

sϵ )N+[ | ∂2φμ −1

∂x2 −
∂2φσ −1

∂x2 | − 2α |φμ −1 − φσ −1| | ∂φμ −1

∂x −
∂φσ −1

∂x | + | ∂φμ −1

∂x −
∂φσ −1

∂x | ] } ] .

(22)

 We have used the convolution theorem for natural transform to 
get the following

∥ φμ − φσ ∥ ≤ max⏟
ϕ ∈J

[ {φ2 |φμ −1 − φσ −1 | − 2αφ (X +

Y ) |φμ −1 − φσ −1 | + φ |φμ −1 − φσ −1 | } ∫
0

τ (τ − ϕ )ϵ

Γ(ϵ + 1)
dϕ ] .

(23)

The integral mean value [35] is used to simplify the preceding 
equation, as shown below

∥ φμ − φσ ∥ ≤ max⏟
ϕ ∈J

[ {φ2 |φμ −1 − φσ −1 | − 2αφ (X +

Y ) |φμ −1 − φσ −1 | + φ |φμ −1 − φσ −1 | }Ξ] .
(24)

∥ φμ − φσ ∥ ≤ χ ∥ φμ −1 − φσ −1 ∥ . (25)

Subtracting μ  by σ + 1, we find that

∥ φσ +1 − φσ ∥ ≤ χ ∥ φσ − φσ −1 ∥ ≤ χ2 ∥ φσ −1 −
φσ −2 ∥ ≤ ⋯ ≤ χσ ∥ φ1 − φ0 ∥ .

(26)

 By employing triangular inequality, we get
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∥ φμ − φσ ∥ = ∥ φσ +1 + φσ +2 + φμ − φσ +1 − φσ +2 − φσ ∥
= ∥ φσ +1 + φσ +2 + ⋯ + φμ − φμ −1 − ⋯ − φσ +2 − φσ +1 − φσ ∥

≤ ∥ φσ +1 − φσ ∥ + ∥ φσ +2 − φσ +1 ∥ + ⋯ + ∥ φμ − φμ −1 ∥
≤ {χσ + χσ +1 + ⋯ + χμ −1} ∥ φ1 − φ0 ∥
≤ χσ {1 + χ + ⋯ + χμ −σ −1} ∥ φ1 − φ0 ∥

≤ χσ { 1 − χμ −σ −1

1 − χ } ∥ φ1 − φ0 ∥ .

(27)

 As χ ∈ (0, 1)  , so 1 − χμ −σ −1 < 1, then we get

∥ φμ − φσ ∥ ≤ χσ

1 − χ ∥ φ1 − φ0 ∥ . (28)

Since ∥ φ1 − φ0 ∥ < ∞ , then ∥ φμ − φσ ∥ → 0 when μ  and σ → ∞ . 
This illustrates that generated by NDM is a Cauchy sequence 
{φμ }  and as a result convergent.

5. Solution of CRWP equation

The fractional natural decomposition technique will be used to 
provide a solution to the relevant problem. Four examples will 
be provided to show the suggested method’s reliability. We’ll 
look at the fractional CRWP equation in this section, which is as 
follows:

∂ϵ φ (x , τ )
∂τϵ = ∂2φ (x , τ )

∂x2 − 2αφ (x , τ ) ∂φ (x , τ )
∂x +

∂φ (x , τ )
∂x , 0 < ϵ ≤ 1

(29)

with initial condition

φ (x , 0) = ϕ (x ) . (30)

 We may now achieve the following results by using NT on 
Equation (28)

N+ [Dτ
ϵ φ (x , τ ) ] = N+[ ∂2φ

∂x2 − 2αφ ∂φ
∂x + ∂φ

∂x ] . (31)

 The nonlinear operator is defined as

sϵ

qϵ N+ [φ (x , τ ) ] − ∑
i =0

n −1

qi −ϵ

si +1−ϵ
[Di φ ]τ =0 = N+[ ∂2φ

∂x2 −

2αφ ∂φ
∂x + ∂φ

∂x ] .

(32)

 We get the following result from the preceding equation:

N+ [φ (x , τ ) ] = ϕ (x )
s + qϵ

sϵ N+[ ∂2φ
∂x2 − 2αφ ∂φ

∂x + ∂φ
∂x ] . (33)

 When we apply the inverse NT on above Eq., it simplify to

φ (x , τ ) = ϕ (x ) + N−{ qϵ

sϵ N+[ ∂2φ
∂x2 − 2αφ ∂φ

∂x + ∂φ
∂x ] } . (34)

 Suppose that the nameless function u1 has the next infinite 
series solution

φ (x , τ ) = ∑
n =0

∞

φn (x , τ ) . (35)

 It’s worth noting that φφx = ∑
n =0

∞
An  stands for Adomian 

polynomials, and they represent nonlinear terms. Employing 
this expression, we can rephrase Eq. (33) as

∑
n =0

∞

φn (x , τ ) = ϕ (x ) + N−{ qϵ

sϵ N+[∑
n =0

∞

φxx − 2α∑
n =0

∞

An +

∑
n =0

∞

φx ] } .

(36)

 Now, using the NDM method, a rough analytical solution for the 
fractional clannish random walker’s parabolic equation will be 
discovered for four distinct statuses.

First triangular periodic solution

Consider the initial condition for Eq. (29) as follows [28]

φ (x , 0) = α + β
2α + 1

α tan(x ) . (37)

 With the above initial condition, we can get the solution of Eq. 
(29) employing the NDM method as follows

φ1 = − βτϵ sec2 (x )
αΓ(ϵ + 1)

, φ2 = 2β2τ2ϵ tan(x )sec2 (x )
αΓ(2ϵ + 1)

, (38)

φ3 =
β2τ3ϵ sec5 (x ) (Γ(ϵ + 1)2 ( − 3βcos (x ) + βcos (3x ) + 8sin (x ) ) − 4Γ(2ϵ + 1)sin (x ) )

αΓ(ϵ + 1)2Γ(3ϵ + 1)
,

⋯ .

(39)

 The above approximate results lead to the precise result shown 
below [28]

φ (x , τ ) = α + β
2α + 1

α tan (x − βτ ) . (40)

 The approximate solutions and Table 1 demonstrate that the 
precise solution of Eq. (29) has a generic type that corresponds 
to the analytical solutions listed above when ϵ = 1.

Table 1. Comparison of the NDM solution and exact solution for case 1 at τ =0.1, α =10, β =
0.1

x φEx φNDM E ϵ =0.95 ϵ =0.90
0.0 0.503999 0.503999 1.3333E-12 0.503855 0.503691
0.2 0.524232 0.524232 1.4754E-10 0.524082 0.523912
0.4 0.546105 0.546105 4.1730E-10 0.545936 0.545746
0.6 0.571956 0.571956 1.1277E-09 0.571746 0.571511
0.8 0.605925 0.605925 3.6158E-09 0.605634 0.605308
1.0 0.657368 0.657368 1.6212E-08 0.656892 0.656362

 The exact solution was compared to the second iteration of 
NTM in both two and three dimensions, so as to understand the 
geometric behavior of our approximate solution to Eq. (29) as 
seen in Figure 1. When ϵ = 1, ϵ = 0.95, ϵ = 0.90 and ϵ = 0.80, the 
exact solution was also compared to the solution of NTM.
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(a) 3D graph of the exact solution (b) 3D graph of the NDM solution

(c) Absolute error at τ =0.01 (d) Graphical representation at τ =0.01

(e) Graphical representation for various 
values of ε (f) Graphical representation x =1

Figure 1. Periodic wave analytical solutions φ (x ,τ ) of Eq. (29) with initial condition 
(36) at τ =0.1, α =10, β =0.1

Second triangular periodic solution

Consider the initial condition for Eq. (29) as follows [28]

φ (x , 0) = α + β
2α − 1

α cot (x ) . (41)

 With the above initial condition, we can get the solution of Eq. 
(29) employing the NDM method as follows

φ1 = − βτϵ csc2 (x )
αΓ(ϵ + 1)

, φ2 = − 2β2τ2ϵ cot (x )csc2 (x )
αΓ(2ϵ + 1)

, (42)

φ3 =
β2τ3ϵ csc4 (x ) (4Γ(2ϵ + 1)cot (x ) − 2Γ(ϵ + 1)2 (β (cos (2x ) + 2) + 4cot (x ) ) )

αΓ(ϵ + 1)2Γ(3ϵ + 1)
,

⋯

(43)

 The above approximate results lead to the precise result shown 
below [28]

φ (x , τ ) = α + β
2α − 1

α cot (x − βτ ) . (44)

The approximate solutions and Table 2 demonstrate that the 
precise solution of Eq. (29) has a generic type that corresponds 
to the analytical solutions listed above when ϵ = 1.

Table 2. Comparison of the NDM solution and exact solution for case 2 at τ =0.1, α =10, β =
0.1

x φEx φNDM E ϵ =0.95 ϵ =0.90
0.1 -0.603109 -0.602998 1.1111E-04 -0.633041 -0.680789
0.3 0.169894 0.169894 4.2571E-07 0.168038 0.165851
0.5 0.317519 0.317519 3.2646E-08 0.316853 0.316089
0.7 0.383837 0.383837 6.0257E-09 0.383476 0.383064
0.9 0.424002 0.424002 1.6956E-09 0.423760 0.423486
1.0 0.439369 0.439369 9.8861E-10 0.439161 0.438924

First multiple soliton-like solution

Consider the initial condition for Eq. (29) as follows [28]

φ (x , 0) = α + β
2α − 1

α tanh (x ) . (45)

 With the above initial condition, we can get the solution of Eq. 
(29) employing the NDM method as follows:

φ1 = βτϵ sech2(x )
αΓ(ϵ + 1)

, φ2 = 2β2τ2ϵ tanh(x )sech2(x )
αΓ(2ϵ + 1)

, (46)

φ3 =
β2τ3ϵ sech5 (x ) (Γ(ϵ + 1)2 ( − 3βcosh (x ) + βcosh (3x ) − 8sinh (x ) ) + 4Γ(2ϵ + 1)sinh (x ) )

αΓ(ϵ + 1)2Γ(3ϵ + 1)
,

⋯

(47)

 The above approximate results lead to the precise result shown 
below [28]

φ (x , τ ) = α + β
2α − 1

α tanh (x − βτ ) . (48)

The approximate solutions and Table 1 demonstrate that the 
precise solution of Eq. (29) has a generic type that corresponds 
to the analytical solutions listed above when ϵ = 1.

Second multiple soliton-like solution

Consider the initial condition for Eq. (29) as follows [28]

φ (x , 0) = α + β
2α − 1

α coth (x ) . (49)

 With the above initial condition, we can get the solution of Eq. 
(29) employing the NDM method as follows

φ1 = − βτϵ csch2 (x )
αΓ(ϵ + 1)

φ2 = − 2β2τ2ϵ coth (x )csch2 (x )
αΓ(2ϵ + 1)

, (50)

φ3 =
β2τ3ϵ csch4 (x ) (4Γ(2ϵ + 1)coth (x ) − 2Γ(ϵ + 1)2 (β (cosh (2x ) + 2) + 4coth (x ) ) )

αΓ(ϵ + 1)2Γ(3ϵ + 1)
,

⋯

(51)

 The above approximate results lead to the precise result shown 
below [28]

φ (x , τ ) = α + β
2α − 1

α coth (x − βτ ) . (52)

 The approximate solutions and Table 2 demonstrate that the 
precise solution of Eq. (29) has a generic type that corresponds 
to the analytical solutions listed above when ϵ = 1.
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6. Numerical results and discussion
For different choices of space and time variables, we conduct 
numerical simulations for fractional clannish random walker’s 
parabolic equation of arbitrary order. Tables 1 and 2 show the 
results of a numerical simulation with different values x  for the 
initial conditions considered in the first triangular periodic 
solution and the first multiple soliton-like solution. Similarly, the 
numerical analysis was carried out for the initial conditions 
considered in the second triangular periodic solution and the 
second multiple soliton-like solution, as shown in Tables 3 and 4
. Some values for the four cases are also mentioned in Tables 1-
4 at ϵ = 0.95 and ϵ = 0.90. We can deduce from the provided 
tables that the results generated by FNDM are very accurate. 
Figures 1(a,b), Figures 2(a,b), Figures 3(a,b), Figures 4(a,b) show 
the behavior of the exact solutions and the NDM solution for 
four cases. Figure 1(c), Figure 2(c), Figure 3(c) and Figure 4(c) 
depict the type of absolute errors for the related equation. 
Figure 1(d), Figure 2(d), Figure 3(d) and Figure 4(d) depict the 
graphical representation between exact and NDM solutions for 
four cases at τ = 0.01. The response of acquired solutions with 
different values of ϵ  between φ (x , τ )  and x  is presented in 
Figure 1(e), Figure 2(e), Figure 3(e) and Figure 4(e). The response 
of acquired solutions with different values of ϵ  between φ (x , τ )  
and τ  is presented in Figure 1(f), Figure 2(f), Figure 3(f) and 
Figure 4(f). The plots display the dependability and applicability 
of the predicted technique while analyzing nonlinear issues. 
Finally, the impact of generalizing models or issues from integer 
to fractional order can be seen in these plots. Furthermore, 
numerical simulations have been performed to demonstrate 
that the proposed technique is viable and effective.

(a) 3D graph of the exact solution (b) 3D graph of the NDM solution

(c) Absolute error at τ =0.01 (d) Graphical representation at τ =0.01

(e) Graphical representation for various 
values of ε (f) Graphical representation x =1

Figure 2. Periodic wave analytical solutions φ (x ,τ ) of Eq. (29) with initial condition 
(39) at τ =0.1, α =10, β =0.1

(a) 3D graph of the exact solution (b) 3D graph of the NDM solution

(c) Absolute error at τ =0.01 (d) Graphical representation at τ =0.01

(e) Graphical representation for various 
values of ε (f) Graphical representation x =1

Figure 3. Periodic wave analytical solutions φ (x ,τ ) of Eq. (29) with initial condition 
(43) at τ =0.1, α =10, β =0.1
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(a) 3D graph of the exact solution (b) 3D graph of the NDM solution

(c) Absolute error at τ =0.01 (d) Graphical representation at τ =0.01

(e) Graphical representation for various 
values of ε (f) Graphical representation x =1

Figure 4. Periodic wave analytical solutions φ (x ,τ ) of Eq. (29) with initial condition 
(47) at τ =0.1, α =10, β =0.1

Table 3. Comparison of the NDM solution and exact solution for case 3 at τ =0.1, α =10, β =
0.1

x φEx φNDM E ϵ =0.95 ϵ =0.90
0.0 0.505999 0.505999 1.3332E-12 0.506145 0.506309
0.2 0.486225 0.486225 1.1814E-10 0.486365 0.486524
0.4 0.467864 0.467864 1.6971E-10 0.467989 0.468131
0.6 0.452010 0.452010 1.4505E-10 0.452115 0.452234
0.8 0.439159 0.439159 8.4428E-11 0.439242 0.439335
1.0 0.429264 0.429264 2.8177E-11 0.429326 0.429396

Table 4. Comparison of the NDM solution and exact solution for case 4 at τ =0.1, α =10, β =
0.1

x φEx φNDM E ϵ =0.95 ϵ =0.90
0.1 -0.609109 -0.608998 1.1111E-4 -0.638872 -0.686344
0.3 0.150560 0.150560 4.2571E-7 0.148803 0.146732
0.5 0.284841 0.284841 3.2657E-8 0.284272 0.283618
0.7 0.337771 0.337771 6.0413E-9 0.337507 0.337206
0.9 0.364431 0.364431 1.7179E-9 0.364288 0.364125
1.0 0.372963 0.372963 1.0153E-9 0.372854 0.372730

7. Conclusion
Using innovative approaches to study and explore nonlinear 
physical models has always helped us grow in science and 
technology. We employed NDM in the present framework to 
analyze the fractional clannish random walker’s parabolic 
(CRWP) equation with fractional order. The uniqueness theorem 
and convergence analysis of the expected issue is investigated 
using Banach’s fixed-point theory. Four instances are shown to 

demonstrate the expected method’s reliability and applicability. 
For highlighted fractional order, the behaviors for the acquired 
findings are presented in 2D, 3D graphs, and tables. These 
graphs help in the conclusion of the analogical model’s 
stimulating actions. Furthermore, NDM does not need any 
conversion, perturbation, or consideration of additional 
polynomials or parameters while solving nonlinear problems. 
Examining these types of happenings can lead to new ways of 
looking into more real-world events. It may also inspire ideas on 
how to evaluate nonlinear models in science and technology 
using an accurate method. This paper clarifies the suggested 
model, which is heavily reliant on temporal instants and their 
histories and can be effectively shown using fractional concepts.
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