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Abstract In multi-object tracking of Intelligent Transportation System, there are objects of different sizes in 

images or videos, especially pedestrian and traffic lights with low resolution in the image. Meantime, 

objects are subject to occlusion or loss in object tracking. All of the above-mentioned situations may lead to 

unsatisfactory multi-object tracking results. Attracted by the effect of deep convolution neural networks, the 

paper proposes a multi-object tracking network, CNN-Based Multi-Object Tracking Networks with 

Position Correction and IMM (CNN_PC_IMM) to solve those problems. Our proposed method consists of 

object detection module and object tracking module. Compared to other networks, our proposed network 

has several main contributions that play an essential role in achieving state-of-the-art object tracking 

performance. In the detection phase, the feature fusion technique is used. We add a scale branch to the 

YOLOv3 network to increase the accuracy of small object prediction and import a residual structure to 

enhance gradient propagation and avoid gradient disappearance and explosion for the whole network. In 

addition, we determine the size of the anchor box based on the size of the object in the dataset to better 

detect and track the objects. In the tracking phase, IMM is used to calculate the motion state information of 

the object at a certain moment. Next, the optimization algorithm is proposed to fine-tune object position 

when the tracking object is occluded due to dense multi-object in traffic scenes or lost due to incomplete 

object information. Finally, experimental results and analysis are performed on the MOT16 benchmark 

dataset with several popular tracking algorithms used to compare the performance with the proposed 

algorithm in the paper. It is demonstrated that the proposed network has better performance on MOPA, 

MOTP, ML. 

Keywords Intelligent Transportation System; multi-object tracking; deep convolution neural networks; 

YOLOv3; IMM

1. Introduction 

With the further improvement of people's material and 

cultural levels in modern society, vehicles have gradually 

developed into a consumer product needed by the public in 

daily life. However, along with the yearly increase in the 

total number of vehicles come a series of serious traffic 

safety and traffic congestion problems in cities. For the 

prospective planning and development of each city, to 

reduce the occurrence of traffic accidents and traffic 

congestion, experts and scholars in industry and academia 

have invested a lot of human and material resources in the 

exploration of Intelligent Transportation Systems. 

Multiple Object Tracking (MOT) also known as Multi-

Object Tracking (MTT) is a computer vision task that seeks 

to optimize the analysis of video to identify and track 

objects belonging to more than one category [1, 2]. Multi-

object tracking is an important part of the unmanned system 

perception algorithm. It not only provides data information 

of multiple spatio-temporal points and positions for multi-

object motion objects, which gets the specific running state 

trajectory of each object. It also supplies highly informative 

data for object scene understanding. For example, the 

object motion contains information such as the acceleration 

and time of the motion of the corresponding object, the 

start-stop, and duration information of the acceleration in 
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the trajectory which indicates when the object has entered 

or left the scene. The implicit information of the trajectory 

can also indirectly express the behavioral motility and 

behavioral psychological characteristics of each object, 

which can offer significant data for high-level computerized 

motion visual recognition such as behavioral feature 

analysis and behavioral feature prediction. In addition, the 

rich message can be obtained by analyzing the motion state 

of each object, such as acquiring the number of objects that 

exist in a specific area over a while, the relationship 

between each object, etc. Therefore, multi-object tracking 

technology has important research and application value in 

Intelligent Transportation System. Traditional multi-object 

tracking involves three main elements, appearance model, 

motion model, and online update mechanism [3]. The 

implementation stage of traditional multi-object tracking 

includes constructing the initial appearance model, in which 

the initial area is obtained by object detection methods, etc.. 

And then, the corresponding features and the model are 

obtained by using the motion model to predict and analyze 

the area where the object is likely to appear. Third, the 

candidate area is determined and matched. Finally, the 

appearance model is adjusted based on the information 

from the previous parts to calculate the object area for the 

current frame. Traditional multi-object tracking methods 

usually use texture, shape, color, SIFT, SURF, and other 

features for object discrimination [4, 5]. Most of these 

features are designed for specific application scenarios, and 

their robustness is weak, resulting in a limited range of use. 

In 2012, a milestone time of the deep learning era, a 

group of researchers from the University of Toronto 

achieved impressively with results in the ImageNet 

competition, overcoming all other teams in the first place 

by a significant margin[6]. Deep learning has subsequently 

been utilized in a broad scope of applications, speech 

recognition, automatic machine translation, self-driving 

cars, face recognition, etc. Multi-object tracking methods 

based on deep learning have also emerged in recent years. 

Usually, multi-object tracking algorithms are based on 

convolutional neural networks to detect objects and employ 

tracking models to accomplish multi-object tracking and 

achieve many excellent results. Yu et al. [7] developed a 

revised Faster R-CNN that contained skip-pooling and 

multi-region characteristics and fine-tuned it on various 

pedestrian detection datasets. They were able to enhance 

the performance of the proposed model by more than 30% 

with this structure, attaining state-of-the-art performance on 

the MOT16 dataset. Zhang et al.[8] interviewed SSD with 

Faster R-CNN and R-FCN in the context of their pig 

tracking and expressed that its performance is better on 

their data. They used an online tracking method named 

Discriminative Correlation Filters (DFC) with HOG and 

Colour Names features to detect the object, and the output 

of the DCF tracker was applied to refine the bounding 

boxes in case of tracking failure. Zhao et al.[9] then used 

SSD to replace pedestrians and vehicles in the scenario, but 

they made use of a CNN-based correlation filter to enable 

the SSD to create far more accuracy in the bounding boxes. 

Wang et al.[10] developed a new RGBT object tracking 

with short-term historical information in correlation filter 

tracking to solve the issue of RGBT and RGB tracking in a 

difficult environment by booting multimodal datasets. CNN 

and object bounding box were used to obtain object features 

in the whole framework which achieved results compared 

to state-of-the-art algorithms on three RGBT datasets. To 

improve the technique to get better performance of the 

bounding box once the objects encounter serious 

deformation, Xie et al. [11] combined the deepest layer 

feature of the CNN model and affine transformation as a 

new information model which was based on region CNN. 

RoI pooling and NMS were applied in the model and the 

proposed model has gained promising results. 

The object scale changes a lot and the actual motion 

pattern is complicated, which makes it difficult for a single 

model to describe the motion pattern of the object. In this 

paper, we propose a multi-object tracking algorithm named 

CNN_PC_IMM that integrates the improved YOLOv3, 

named YOLOv3_I, and interactive multi-model, position 

correction optimization algorithm and can also 

automatically adjusts the model parameters according to the 

size of the target in the database. The model finally is tested 

and analyzed on the MOT16 dataset. The main 

contributions of this paper are: a new model for multi-scale 

detection of objects based on YOLOv3 is proposed and 

experimentally proven to be feasible for object detection. 

The detection results of the previous step are used as input 

for the subsequent tracking. And the motion state of the 

object is recorded with the interactive multi-model for 

object matching. A position correction optimization 

algorithm is proposed for the multi-object to detect the error 

rate by fine-tuning the position of the detection and 

prediction results when an object is lost or covered. The 

reliability of the proposed algorithm is verified and 

analyzed on the MOT16 and KITTI datasets in comparison 

with other algorithms. 

The rest of the research is described as follows. Section 2 

introduces the related work of multi-object tracking in 

Intelligent Transportation System. Then, Section 3 is 

dedicated to our approach to implementing multi-object 

tracking. Section 4 covers the comparison of the 

experimental results and analysis. Finally, the conclusion is 

wrapped up in Section 5. 

 
2. Related work 

Intelligent Transportation System (ITS) provides 

intelligent guidance for relieving traffic jams and reducing 

environmental pollution. The development of Intelligent 

Transportation System has been progressing rapidly. 

Meanwhile, Intelligent Transportation System has been 

encouraging much research in various fields such as vehicle 
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detection, congestion detection, vehicle counting, and multi-

object tracking in recent years. Detection and tracking of 

traffic objects are an indispensable part of Intelligent 

Transportation System. The following gives the development 

of object tracking in Intelligent Transportation System with 

deep learning techniques or traditional methods。 

 

2.1.  Object tracking in ITS with deep learning techniques 

Video-based car detection is considered as a component of 

Intelligent Transportation System, due to its accessibility to 

non-intrusive and data acquisition abilities of holistic car 

behavior. Inspired by Harris-Stephen corner detector, 

Chintalacheruvr et al. [12]designed a vehicle detection 

system that set the number and pace of vehicles on arterial 

roads and highways. This system has no complex calibration 

required, is robust against change, and gets greater 

performance on low-resolution video. In the field of ITS. 

Hinz et al.[13] proposed the first multi-object tracking model 

based on vision sensors for the neural vision system. 

Capabilities of the system were tested on real dynamic vision 

data of a highway bridge scenario. Liang et al. [14] employed 

the YOLO model and multi-object tracking algorithm to 

calculate the number of vehicles in the various traffic 

environment. In the paper, a real vehicle dataset was obtained 

from highway surveillance cameras. The experiment results 

expressed the proposed new method was feasible to be 

applied to real-life scenarios of vehicle computing. 

According to discuss the possibility of applying deep 

learning to low-resolution 3D LiDAR sensors, Pino et al. [15] 

devised a LIDAR-based system that performed point-to-point 

vehicle detection with PUCK data by CNN and MH-EKF to 

guess the real position and speed of the detected vehicle. The 

results showed that the claimed low-resolution DL algorithm 

could successfully perform the vehicle detection task with 

better performance than the geometric baseline approach. 

Furthermore, it was observed that the system realized 

tracking performance at the close range to that of the high-

end HDL-64 sensor. On the other hand, at long distances, the 

detection was restrained to half the distance of the high-end 

sensors. Liu et al.[16] proposed the HSAN model to boot the 

ReID performance and obtained the robust features of the 

various objects. To distinguish objects, the attention 

mechanism method and the posed information were 

employed. The Market-1501, CUHK03 and DUKE ReID, 

and MOT were compared on HSAN. Abbas et al. 

[17]designed a V-ITS system to predict or track vehicles and 

driver’s activities during highway driving. This modified V-

ITS system enabled automated traffic regulation and thus 

reduced traffic accidents. To develop the V-ITS system, a 

pre-trained convolutional neural network model with 4 layers 

was used and the illegal behavior was identified with a deep 

belief network model. Vehicle counting has a vital role in 

Intelligent Transportation Systems as it assists in the creation 

of autonomous driving systems and better road planning. The 

author [18] suggested an effective object counting system 

and evaluated its capabilities with 20 different video datasets.  

 

2.2． Multi-object tracking in ITS with traditional methods  

Nizar et al. [19] used HOG to extract object features, SVM 

to classify objects, KLT tracker to compute the number of 

objects in order to detect traffic situations by computer vision. 

The developed system got 95.2% accuracy. Tian et al. [20] 

proposed a new tracking method to address the association of 

the object involving the presence of motion noise or extended 

occlusions by bringing together information from the 

expanded structural and spatial domains. In this approach, the 

detections are firstly combined into small traces depending 

on the meta-measurements of object proximity. The task of 

correlating small tracking is settled by structural information 

of the motion patterns based on their interactions. This work 

[21] is a broad overview of the MDP framework for MOT 

introduced by Xiang et al. with some additional crucial 

extensions. Firstly, the authors tracked objects with various 

cameras and sensor modalities by merging object candidate 

proposals. Secondly, the objects were tracked directly in the 

real world, which is different from the other methods. This 

allowed autonomous available to navigation and related tasks 

on tracking. Vasic et al. [22] used a collaborative fusion for 

extending the GM-PHD to track vehicles, which relied on the 

problems of clutter and occlusion. Emami et al. [23] 

presented a utility MOT framework that merged trajectories 

from a new video MOT neural architecture devised for low-

power edge devices with trajectories from commercially 

accessible traffic radars. The proposed architecture 

implemented efficient spatio-temporal object re-identification 

by depth-separable convolution for joint predictive object 

detection and dense grid features at a single scale. Due to the 

complex interaction and representation of road participants 

(e.g., vehicles, bicycles, or pedestrians) and road context 

information (e.g., traffic lights, lanes, and regulatory 

elements), behavior prediction in multi-intelligent bodies and 

dynamic environments is essential in smart vehicle 

environments. Gómez–Huélamo et al.[24] described a novel 

SmartMOT, a powerful and simple model that introduced 

semantic information and the mind of tracking-by-detection 

to predict the next trajectories of the obstacles by supposing 

CTRV structure. The system pipeline was provided by the 

monitored lanes around the self-vehicle, which were 

accounted for by the planning layer, the status of the self-

vehicle, including its mileage and speed and the 

corresponding bird's eye view (BEV) detection. 

3.Our approach 

The scale of traffic objects varies greatly, and the actual 

motion of the objects in traffic scenes is complex, so it is 

difficult to describe the motion pattern of the objects using                

only one model. Therefore, to address the above problems, 

the article proposes a multi-object tracking algorithm based 

on the improved YOLOv3 with interactive multi-model [25, 
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26] and object position correction algorithm. The algorithm 

uses the current state-of-the-art "detection + tracking" idea 

(shown in Figure 1). First, the algorithm uses the improved 

YOLOv3 model (YOLOv3_I) for multi-scale detection of the 

objects. Feature fusion technique is used and a scale branch 

is added to the YOLOv3 network to increase the accuracy of 

small object prediction. In addition, we also import a residual 

structure to enhance gradient propagation and avoid gradient 

disappearance or explosion for the whole network. The result 

of the object detection is taken as the input for the subsequent 

tracking, and the object detection frame and features are 

mainly adopted for the later tracker's matching calculation. 

Image pre-processing includes the usual operations such as 

data normalization, flipping, and refining the results by 

removing the objects with confidence less than 0.7. Non-

maximum suppression is also used to get more accurate 

results. Second, in order to accommodate the complexity of 

moving objects, the interactive multi-model is used to 

calculate the motion state information of the object at a 

certain moment. An optimization algorithm corrects the 

position of objects to find an object detection frame for each 

predicted object. If it is found, it is judged as a tracker; 

otherwise, it is decided that the object has been lost and 

needs to be fine-tuned in the processing of the detection and 

prediction results. Then, the position correction algorithm is 

used to correct the object position. If the object detection box 

cannot find the corresponding predicted box that means that a 

new object has appeared. Finally, the objects are matched 

with the tracker,and  the feature set is updated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The network architecture of our approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. General flow chart of our multi-object tracking model 

Figure 2 gives the flow chart of our model. It mainly 

contains two phases. 

Detection phase: 

Step 1: Split the original image into S*S cells or grids; each 

cell produces K bounding boxes according to the number of 

anchor boxes 

Step 2: Employ the convolutional neural network to get 

features and predict the b=[bx, by, bh, bc]T, and the 

class=[C1,C2,C3,…,Cc]T 

Step 3: Compare the maximum confidence  IoU𝑡ℎ𝑟𝑒𝑠
𝑡𝑟𝑢𝑡ℎ of the 

K bounding boxes with the threshold IoUthres, if IoU𝑡ℎ𝑟𝑒𝑠
𝑡𝑟𝑢𝑡ℎ >

𝐼𝑜𝑈thres , the bounding box has the object. Else, the bounding 

boxes do not contain the object. 

Step 4: Select the class with the highest probability as the 

object category. Adopt NMS to operate a maximum part 

search for suppressing redundant boxes, output the results of 

object detection. 

Tracking phase: 

Step 1: Use IMM to predict tracks or Bbox for the current 

frame. If objects are confirmed detection results and 

prediction tracks begin correlation and matching. Else, the 

position correction algorithm is used for unmatched tracks 

and detections.  

Step 2: Update the tracked Bbox after the matching is 

completed. 

Step 3: After updating, the current frame is predicted, the 

next frame is observed, and updated; then predicted again. 

The next frame is observed and updated etc. 

 

3.1. Improved yolov3 network 

In traffic scenes, people, traffic lights, or cars in the input 

image have low resolution and belong to small objects, while 

the perceptual field of the convolutional layer at the end of 

the YOLOv3 backbone is very large. So it is a difficult task 

to detect the accurate objects with YOLOv3. In computer 

vision tasks, invariance and equivalent transformations are 

two important properties in image feature representation. 

Classification aims to learn high-level semantic information 
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and therefore invariant feature representations are required. 

The goal of object localization is to distinguish between 

position and scale changes, so it requires equivalence 

transformations. Object detection consists of two subtasks, 

object identification, and localization. While learning 

invariance and equivalence transformations are the keys to 

detection. The YOLOv3 is composed of a series of 

convolutional and pooling layers. The deep-level features 

have stronger invariance, but their equivalence 

transformation is weak. Although this is beneficial for 

classification recognition, it suffers from low localization 

accuracy in object detection. On the contrary, the shallow 

layer features are not conducive to semantic learning, but it 

contains more edge and contour information, which helps in 

object localization. The combination of multi-scale features 

can increase the global and local feature information in the 

model to improve the accuracy of object detection and 

increase the accuracy of subsequent object tracking. 

Therefore, to boot the detection performance of the model for  

small objects in traffic scenes, this paper uses the feature 

fusion technique to enhance the prediction of YOLOv3 by 

further integrating deep and shallow features in the model, 

adding a one-dimensional scale to strengthen small object 

prediction, and adding a residual structure in the 

corresponding scale branch to effectively control the gradient 

propagation and prevent the gradient from disappearing, 

degrading the network, and not easily converging, which 

brings about unfavorable network training. The network is 

easy to converge. This makes the training of the deeper 

network less difficult. The structure of the improved Yolov3 

network is shown in Figure 3. The detailed fusion process 

can be described as follows:  

fmir = {
Action(fi), r = 0

Action(fmir−1), r = others
     (2) 

 
Where fmir  indicates the r_th layer feature map of fi , 

Action  belongs to actconv, actBN , actLR, actAdd and stands 

for the action of convolution, BN, ReLu, and tensor addition. 

ffmip  represents the p_th fused feature map. fmirhigh
 and 

 fmirlow
 show the high-resolution feature map and low-

resolution feature map, respectively. actUS  is the action of 

upsampling. actFC  is the action of full connection and 

actconv represents the action of convolution. To describe the 

model later, the imporved model is abbreviated as 

YOLOv3_I. 

The model is similar to YOLOv3, with only convolution 

layers. The size of the output feature map is controlled by 

adjusting the convolution step, so there is no special 

restriction on the input image size. Also drawing on the 

pyramid feature map idea, the small size feature map is 

applied to detect large-size objects, while the large size 

feature map detects small size objects. Finally, according to 

analysis to the dataset, a total of 4 feature maps are output, 

the first feature map is down-sampled 32 times, the second 

feature map 16 times, the third 8 times, and the fourth 4 times. 

Four detections, each corresponding to a different field of 

perception, 32 down-sampling has the largest field of 

perception, suitable for detecting large objects, 16 for objects 

of average size, 8 and 4 for the smallest field of perception, 

suitable for prediction small objects, and even smaller objects. 

Because objects have different pixels, we use different scales 

of anchor boxes to match. The anchor size of each cell is 

shown in table 1 according to the object size of the MOT16. 

The whole network, which draws the essence of Resnet [27], 

Densenet [28], and FPN [29], incorporates the current 

industry effective techniques of object detection to detect the 

object. 

Table 1. Model anchor parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The structure of YOLOv3_I network 

 

3.2. Interactive multi-model algorithms 

                           

𝑓𝑓𝑚𝑖𝑝=𝑎𝑐𝑡𝑐𝑜𝑛𝑣 (𝑎𝑐𝑡𝐹𝐶 (𝑎𝑐𝑡𝑈𝑆 (𝑓𝑚𝑖𝑟ℎ𝑖𝑔ℎ
) , 𝑓𝑚𝑖𝑟𝑙𝑜𝑤

))        

(1) 
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Due to the complexity of the actual motion of the objects 

in the traffic scene, it is difficult to describe the motion 

pattern of the objects using only one model. Therefore, the 

algorithm in this paper adopts the Interacting Multiple Model 

(IMM) [30] to estimate the motion patterns of multiple 

objects (as shown in Figure 4). Its main feature is the ability 

to approximate the state of dynamic systems with multiple 

patterns of behavior that can be switched from one behavior 

pattern to another. In particular, the IMM evaluator can be a 

self-tuning variable bandwidth filter, which allows to 

naturally track maneuvering objects. IMM handles multi-

object motion models in the Bayesian framework with a 

model set containing different motion sub-models, each 

corresponding to a filter. To solve the uncertainty of the 

object motion, each filter performs parallel operation 

computation and switches between models according to the 

updated weights. During object tracking, the fit of each sub-

model of the system to the current object depends on the 

probability of the model. So, the interaction between models 

can be performed according to this principle, and finally, the 

probabilistic output results of each sub-model are fused. 

 

Figure 4. Flow chart of IMM algorithm. 

 

(1). Model initialization: Mk
j
 denotes the j_th filter at the 

k_th frame,  j ∈ {1, … , r}. 

Model initialization state X̂k−1|k−1
0j

; Covariance matrix 

Pk−1|k−1
0j

: 

  

X̂k−1|k−1
0j

=∑ X̂k−1|k−1
i uk−1|k−1

i|jr
i=1                                      (3) 

 

Pk−1|k−1
0j

= ∑ uk−1|k−1
i|j

[Pk−1|k−1
j

+ (X̂k−1|k−1
i −r

i=1

X̂k−1|k−1
0j

) × (X̂k−1|k−1−
i X̂k−1|k−1

0j
)T]                                  (4) 

Mixing probability uk−1|k−1
i|j

= cj
−1

pijuk−1
i ; 

Normalization constants cj = ∑ pijuk−1
ir

i=1 ; pij is the 

Markov transition probability of filter i to j. 

(2). Model filtering estimation: in this paper, the standard 

IMM model is used, and the filtering phase has two main 

steps: prediction and correction. The prediction phase is 

responsible for calculating the a priori state estimates for 

each system in the current state. The correction phase is 

responsible for combining the actual measurements into each 

prior estimate to obtain the corresponding a posteriori state 

estimate. The motion and measurement models of the 

Kalman Filter are described as follows: 

 

X̂k−1|k−1
j

=AX̂k−1|k−1
0j

+Wk
j
                                          (5) 

 

           𝑍𝑘
𝑗

= 𝐻𝑋̂𝑘|𝑘−1
𝑗                                                 (6) 

 

    X̂k|k−1 
j

is  Mk
j

 a priori state estimation. A, H are state 

transition matrice, measurement matrice respectively. 

Zk
j
 represents the measured value at the k_th frame. Wk

j
 and 

Vk
j

 are the noise corresponding to the computational 

quantities obeying Gaussian distribution. Finally, the 
posterior state estimate is obtained. 

𝑋̂𝑘|𝑘
𝑗

=A𝑋̂𝑘|𝑘−1
𝑗

+𝐾𝑘
𝑗
(𝑍𝑘

𝑗
− 𝐻𝑋̂𝑘|𝑘−1

𝑗
)                                  (7) 

Zk
j

− HX̂k|k−1
j

 is the residual of the motion model and the 

measurement model. Kk
j
 filtering gain is defined as: 

  𝐾𝑘
𝑗

= 𝑃𝑘−1|𝑘−1
𝐽 𝐻𝑇(𝐻𝑃𝑘|𝑘−1

𝑗
𝐻𝑇 + 𝑅)−1                         (8) 

Where the a priori covariance matrix is: 

              𝑃𝑘|𝑘−1
𝑗 =A𝑃𝑘−1|𝑘−1

𝑗
𝐴𝑇+Q                                     (9) 

The posterior covariance matrix is updated as: 

           Pk|k
j

=（I-Kk
j

H）Pk|k−1
j

                                   (10) 

(3). Model probability updating. Calculating model 

probabilities: 

                             𝑢𝑘
𝑖 =

1

𝑐
𝛬𝑘

𝑗
𝑐𝑗̿                                                  (11) 

 

                           𝑐 = ∑ 𝛬𝑘
𝑗

𝑐𝑖̿
𝑟
𝑖=1                                      (12) 

Likelihood function Λk
j

: 

 

                        Λk
j

=N(Z̃k
j
; 0, Sk

j
 )                                  (13) 

 

The filter residual，Z̃k
j
=Zk

j
-HX̂k|k

j
；Sk

i = HPk|k−1
j

HT+R is 

the corresponding filtering residual matrix. N(∙) is Gaussian 

distribution. If the residuals are larger, it means that the 

model has a larger deviation from the object localization. Its 

weight decreases, and vice versa, the weight increases. 

(4). Estimated fusion. Final state estimates and their 

covariances; 

                          X̂k|k
j

=∑ uk
ir

j=1 X̂k|k
j

                                        (14) 

 

𝑃𝑘|𝑘=∑ 𝑢𝑘
𝑗𝑟

𝑗=1 [𝑃𝑘|𝑘
𝑗

+ (𝑋̂𝑘|𝑘
𝑗

− 𝑋̂𝑘|𝑘)(𝑋̂𝑘|𝑘
𝑗

− 𝑋̂𝑘|𝑘)𝑇]       (15) 

 

3.3. Position correction optimization algorithm 

In traffic scenes, traffic objects such as cars and 

pedestrians are usually very dense. Especially in the event of 
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traffic congestion, the objects are easily obscured and so on. 

When the object is obscured, the information of the object 

becomes incomplete and the object is easily lost. Therefore, 

in the paper, a position correction algorithm that fine-tunes 

the tracked object position is used in order to solve the lost-

following phenomenon that occurs during the object tracking. 

The method corrects the object position based on the original 

predicted position, as shown in Figure 5. When the object is 

not found in the tracking area predicted by the IMM [31], the 

algorithm firstly considers that the object has been lost. Then, 

two points are selected from the location predicted by the 

IMM and the detection area of the detection algorithm. 

Eight-pixel points are added around them. Next, a fixed 125 

threshold is set to compare the grayscale value of each point 

with the object's empirical grayscale value. The last, we get 

the best point from the ten points and determine whether the 

point belongs to the object position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart of the position correction algorithm 

 

3.4. Implement detail 

The training parameters of the network are set as follows: 

the parameter of leak ReLu ai is 10; the hyper-parameters 

λnoobj, λobj, λcoord, λclass, λprior, of the loss function are 

1,5,1,1 and 0.1; the N prior is 11200. The adaptive moment 

estimation is adopted to update the weights of the network; 

the momentum is 0.9, the decay is 0.0005, the batch size is 

32; the initial learning rate is 0.001, and the learning rate on 

the 300th epoch and the 400th epoch is set to 0.1 times of the 

original. 

4. Experiments 

4.1. Experiment preparation 

The experiments are operated on the computer with Intel 

Core i7-7700 CPU, 3.5GHz, 8G DDR4, 2666MHz memory, 

and Nvidia GTX1080Ti, with Ubuntu Linux 18.04 and 

Python3. Deep learning framework is tensorflow. 

The performance of the proposed detection model is 

proven on MOT16 and KITTI datasets. The KITTI dataset is 

a dataset for autonomous driving, with cars and pedestrians. 

The MOT16 dataset is proposed in 2016 to measure 

standards for multi-object tracking detection and tracking 

methods. The performance of the proposed multi-object 

tracking algorithm is evaluated on the public MOT16 dataset 

[32]. The MOT16 benchmark evaluates the tracking 

performance of challenging test sequences, including 

forward-looking scenes with moving cameras and top-down 

surveillance settings. The dataset was divided into a training 

set and validation set. Finally, it is compared with other 

multi-object tracking algorithms on the test set of MOT16. 

The evaluation metrics are: 

MOTA: Multi-Object Tracking Accuracy: 

               MOT=1 –
FN+FP+IDs

GT
                          (16) 

GT is the number of Groundtruth. FN stands for the 

missing number. The number of frames t in which the object 

has no hypothetical position to match. FP is the number of 

object mismatches. The number of frames t in which the 

given hypothetical position has no tracking object to match it. 

IDs is a mismatch. The number of times the tracking object 

has an ID switch in frame t. 

MOTP: Multi-Object Tracking Precise: 

                       MOTP =
∑ di,ji,j

∑ ctt
                                        (17) 

   ct represents the number of matches between objects and 

hypotheses in frame t. di,j  denotes the distance between 

objects and their paired hypothesis positions in frame t.   
4.2.The results and analysis of detection module 
The evaluation metric of the object detection commonly 
contains the mean Average Precision (mAP), the Average 
Precision (AP), F1 score, Recall rate, and so on. The mAP is 
considered the average of AP of all object categories. Thus, 
we use mAP and F1 scores as the authoritative metric to 
evaluate the performance of our model. Tables 2 and 3 
introduce typical and related evaluation results on 

MOT16 and KITTI datasets. 

 
Table 2. Comparison performance of object detection model 

on mot16 

 

 

Table 3. Comparison performance of object detection model 

on KITTI 

 

Model (Detector) Recall Precision 

FrRCNN(VGG16) 49.5% 77.5% 
FrRCNN(ZF) 41.3% 72.4% 

YOLOv3 

YOLOv3_I 

48.2% 

50.1% 

75.6% 

77.4% 



  

 3 

 

Figure 6. YOLOv3_I detection epoch vs loss on MOT16 (down) and KITTI 

(up) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                       

 

 

 

 

 

 

 

 

Figure 7. YOLOv3_I detection results schematic diagram on MOT16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

Model (Detector) Recall Precision 

FrRCNN(VGG16) 63.9%  79.1% 

FrRCNN(ZF)   60.1% 74.6% 
YOLOv3 

YOLOv3_I 

75.7% 

79.8% 

78.9% 

81.1% 
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Figure 8. YOLOv3_I detection results schematic diagram on KITTI 

Referring to the idea in SORT tracking algorithm, 
detection performance has a significant impact on tracking 
performance. A good detector can result in the best tracking 
accuracy [33]. Faster R-CNN is the popular and classical 
detection algorithm in the study. In this paper, we also hope 
to improve the tracking performance by improving the 
detector accuracy, as shown in Table 2 and 3, YOLOv3_I 
outperforms Faster R-CNN in terms of object detection effect 
and has more advantages in detection speed and accuracy, 
which is more beneficial to have better behavior of multi-
object tracking. In the process of pedestrian detection, the 
paper uses the parameters obtained from training in PASCAL 
VOC for initialization. The Table compares two network 
architectures provided by FrRCNN, namely Zeiler and 
Fergus' architecture (FrRCNN(ZF)) [34] Simonyan and 
Zisserman's deeper architecture (FrRCNN(VGG16)) [35] and 
the paper's improved multi-scale fusion model based on 
YOLOv3, named YOLOv3_I  which shows that the model 
used in this paper obtains better detection recall and accuracy. 
It can be facilitated later object tracking. Figure 6 gives the 
detection result of epoch vs loss on MOT16 and KITTI 
datasets. The proposed model compared with other models 
has good convergence speed. Figures 7 and 8 show the 
schematic diagrams of the detection output of the YOLOv3_I 
model, in which the corresponding confidence, classification, 
and localization are given for the detected objects. In the final 

tracking part of the experiments, only the objects with the 
detection probability confidence greater than 50% are passed 
to tracking model in the paper. 

 

4.2. Analysis of experimental results of multi-object tracking 

model 
The proposed method is compared with several existing 

object tracking methods on the MOT2016 to test the various 
performances of the algorithm, as shown in Table 4. All 
benchmark testing methods and our approach use the same 
publicly available test results for a fair comparison. The 
proposed method outperforms previous approaches in terms 
of MOTP, ML, and Frag. The offline tracking method can 
access all future detection results and reasons on the data 
association step. The results show that the MOTP of the 
proposed method is better than that of the offline method 
with about 3 percentage points higher performance. The 
technique using object correction can find the correct object 
after occlusion or drift. Therefore, our experiment results 
have higher MT and lower ML, but the IDS is higher. When 
the objects are occluded, the proposed method in the paper 
may incorrectly assign them to other detection objects. 
However, when the objects reappear, the methods proposed 
may re-match them with the correct detection results. Such a 
process can lead to a large number of switches. But the Frag 
metric is still high. 

The red boxes represent the person and give confidence to 
the corresponding objects. The yellow numbers give the ID 
of the pedestrian tracking (only the pedestrian ID is given 
because the objects are too dense) in Figure 9. In this figure, 
cars or pedestrians move from far to near or near to far, 
showing the same class or the scale size of the object change 
over time, which reflects the different scale changes of the 
object. Correspondingly, YOLOv3_I uses 4 scale features for 
fusion to obtain detection results in feature maps of different 
depths. Smaller objects can be detected in larger feature maps, 
while 

larger objects can be examined in relatively smaller feature 
maps, which can the detection objects at different scales.

 
 

 

 
 
 
 
 
 
 
 
 
 

 
      
 
 

Method Mode MOTA↑ MOTP↑ MT↑ ML↓ IDs↓ Frag↓ 

MCjoint[36] Offline 47.1 76.3 20.4 46.9 370 598 

SMOT[37] Offline 29.7 72.5 5.3 47.1 3108 4483 
NOMT[19] Offline 46.4 76.6 18.3 41.4 359 504 

LMP[38] Offline 48.8 79.0 18.2 40.1 481 595 

OVBT[39] Online 38.4 75.4 7.5% 47.3% 1321 2140 
EAMTT[40] Online 38.8 75.1 7.9% 49.1% 965 1657 

oICF[41] Online 43.2 74.3 11.3% 48.5% 381 1404 

SORT[33] Online 59.8 79.6 25.4 22.7 1101 1664 
Deep SORT[42] Online 61.4 79.1 32.8 18.2 781 1023 

Our Online 61.7 80.6 23.5 16.3 837 1705 

Table 4.  Benchmark tracking performance comparison on MOT16 
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(a) On MOT16-01 

 

     
(b) On MOT16-03 

 

     
(c) On MOT16-06 

 
 
 

     
(d) On MOT16-07 
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(e) On MOT16-08 

 

     
(f) On MOT16-12 

 

     
(g) On MOT16-14 

 
Figure 9.The results of our method on MOT16 (a,b,c,d,e,f,g) 

 

5. Conclusion 

The traffic scenes are complex and changeable, which 
brings great difficulty to implement the Intelligent 
Transportation System. In this paper, we propose a multi-
object tracking method for traffic scenes. In multi-object 
detection, simple objects can be distinguished by using 
shallow features, while deeper features can identify more 
complex objects, so this paper uses multi-scale feature fusion 
technology to adapt to the changes of different scales of 
multi-object objects. A scale prediction is added to the 
original YOLOv3 network so that the accuracy of small 
object prediction can be increased, and the residual structure 
is also introduced to enhance the gradient propagation and 
avoid gradient disappearance or explosion. Next, the traffic 
scene is dense with objects, and occlusion between objects 
tends to occur. When the tracked object is occluded, the 

information of the object becomes incomplete and thus the 
phenomenon of the loss happens. This paper develops a 
position correction algorithm to fine-tune the position of the 
tracked object. And when the object reappears, the occluded 
object can be matched with the correct detected object again. 
The IMM algorithm is also dedicated to the tracking stage to 
adapt to the complex object changes in the traffic scene and 
improve the tracking accuracy. 

The proposed multi-object tracking method in this paper is 
mainly based on the mainstream idea of "detection + 
tracking", which achieves a certain tracking effect and has a 
certain application value. However, for complex traffic 
scenarios, the method still has some shortcomings, so the 
follow-up work will be carried out. To improve the overall 
detection and tracking performance for multiple objects in a 
scene, the work can be considered to study the detection and 
tracking system in terms of the inter-influence relationship 
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between objects, or the interconnectedness between traffic 
objects. Another research direction is to combine the object 
detection output results with the tracking model to further 
investigate detection-based end-to-end tracking algorithms. 
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