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Abstract
As an important part of the lifting platform of pallet forklift trucks, how to reduce the 
deformation of the pallet rack under working conditions while reducing the mass to ensure 
the safety performance of forklift trucks is the most concerning issue in the design of forklift 
truck structure. The pallet rack structure is complex, and optimizing simulation using 
traditional high-precision simulation models takes much time and effort. Therefore, this 
paper takes the lifting platform of an unmanned AVG forklift truck as the research object 
and establishes a parametric model of the pallet rack using the 3D modelling software 
SolidWorks and the finite element analysis software ANSYS to carry out static analysis of it. 
Optimization design variables are selected, a single surrogate model and ensemble 
surrogate model are chosen for various surrogate model techniques, a small number of 
sample points are used to construct a low-precision model, and adaptive infilling technology 
is used to improve the model accuracy, and the structure is optimized, and the results show 
that, while the pallet rack structure meets the requirements of light weight and strength, 
the mass is reduced by 1.2%, and the morphology is reduced by 17.2%. Moreover, a global 
sensitivity analysis of each design parameter was carried out under the guidance of the 
surrogate model, highlighting the most influential design variable as the height of the 
channel steel and establishing the design variables that should be taken into account in the 
structural design. This paper compares the performance of the mainstream single-
surrogate model and ensemble-surrogate model as well as the adaptive infilling strategy in 
engineering design and proves that the surrogate model optimization method has a certain 
guiding significance for the structural optimization design of pallet racking.
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1. Introduction
AGV forklift is an important unmanned material handling robot 
under the trend of intelligent industry, and its mature 
technology makes it widely used in stations, ports, airports, 
factories and warehouses, AGV forklifts are highly efficient 
equipment for mechanised loading and unloading, stacking and 
short-distance transport. Among them, a pallet forklift can 
ensure the stability of the material itself in the case of uneven 
road surfaces and heavy loads of forklifts, which is an important 
part of the forklift branch. Therefore, AGV pallet forklift is the 
current research focus of unmanned material handling 
robots.As an important component of the pallet forklift working 
device, the pallet rack is the executor of the forklift to realize the 
handling function and the focus point of value embodiment. Its 
performance directly affects the efficiency of the forklift. 
Traditionally, the optimal design of pallet rack is mainly done 
through computer-aided design, and good results are obtained 
by simulation optimization, but there are many disadvantages 
in the simulation itself: the simulation process is time-
consuming, and there is a lack of optimization algorithms for 
the time-consuming simulation, which results in the whole 
simulation process needing a lot of time and computational 
costs. The structural design of pallet racks involves multiple 
variables and highly nonlinear relationships, in this context, the 
surrogate modelling technique, which has a small amount of 
computation and is based on a small amount of sample data, is 
an excellent choice [1], and optimization based on the surrogate 

model technique can reduce the computation time and improve 
the optimization efficiency.

In recent years, the field of surrogate modelling has continued 
to develop, giving rise to numerous new methods and varieties, 
which have achieved excellent results in the fields of 
mechanical, materials, fluid and other engineering fields. 
Queipo et al. [2] provide a comprehensive discussion of the 
fundamental issues that arise from surrogate model-based 
analysis and optimization. In 2012, Song et al. [3] used multiple 
surrogate models to perform collisional foam-filled conical thin-
walled structure optimization, and the results show that 
different surrogate model approaches produce different results 
for the final collision optimization design. Chen et al. [4] 
performed a multi-objective optimization design of an injection 
model based on the KRG model and the particle swarm 
optimization algorithm. In 2020, Jiang et al. [5,6] systematically 
elaborated on the application of surrogate models in the field of 
engineering and used a variable fidelity surrogate model to 
design the micro air vehicle fuselage as well as reinforced 
cylindrical shells. In 2020, Meng et al. [7] optimized the robust 
design of incomplete reinforcing bars based on an ensemble 
surrogate model. Yondo et al. [8] compared the surrogate 
model approach and the experimental design approach in the 
aerodynamic analysis of a flight vehicle try and introduced the 
optimization method based on the surrogate model. In 2021, 
Zhang et al. [9] proposed an optimization framework based on a 
multi-fidelity surrogate model by correlating the configuration 
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parameters of an aircraft with its start-up performance.

Prediction is one of the most important functions of the 
surrogate model, and one of the important methods to improve 
the prediction accuracy of the surrogate model is to update the 
surrogate model by infilling the criterion. The more commonly 
used mainstream infilling criteria are the maximizing the 
probability of improvement (PoI) [10] criterion and maximizing 
expectation improvement (EI) [11] criterion, of which the EI 
method has better global search performance and a wide range 
of application scenarios and has become one of the most 
mainstream infilling criteria, which also has a lot of applications 
in engineering design. Zeng and Zhou [12] proposed a KRG 
model optimization method integrating LCB and trust domain 
and successfully applied it to the design optimization of I-beam. 
Kleijnen [13] proposed a bootstrap EI method, which can realize 
the multi-point infilling process based on EI and improve the 
modelling efficiency. Chaudhuri et al. [14] ensemble EI and PoI 
criteria to update the surrogate model every time by obtaining 
multiple sample points obtain multiple sample points to update 
the surrogate model and apply the method to the optimized 
design of vibrating wings. Liu et al. [16] converted the classical 
four criteria EI, PI, LCB, and MP into an infilling criterion with 
constraints and applied it to the wing and aerodynamic inverse 
design problems, and obtained better results.

In this paper, an unmanned AGV forklift truck is selected as the 
research object, focusing on the analysis and improvement of 
the pallet rack part of the forklift truck, to achieve lightweight 
under the premise of ensuring the structural strength and the 
optimization makes the forklift truck have a higher structural 
strength, a better loading capacity, and a lighter mass. At the 
same time, to compare the difference between the ensemble 
surrogate model and the single surrogate model in engineering 
applications, this paper chooses the single surrogate model 
represented by the Kriging(KRG) [10] model and the ensemble 
surrogate model represented by the extended adaptive hybrid 
functions(E-AHF) [15] to optimize the design and analysis of the 
forklift truck pallet racks, respectively. Among them, the KRG 
model, as one of the typical single-surrogate models, is 
essentially a linearly weighted combination of information 
about known points in order to predict the position information 
within a certain range. Unlike the rest of the single surrogate 
models, the KRG model has a better local prediction ability due 
to the correlation function, good continuity and derivability, and 
good approximation for nonlinear complex problems. The E-
AHF ensemble surrogate model, one of the newly proposed 
ensemble surrogate models in recent years, has excellent 
predictive ability due to its extensive model library and the 
excellent weighting method used. It has better global 
performance for highly nonlinear problems. Therefore, the 
above two surrogate models are chosen to represent their 
respective fields. In order to further reduce the cost of the 
simulation model, this paper chooses to construct the low-
precision surrogate model with less sample points. To further 
reduce the cost of the simulation model, this paper chooses to 
construct a low-precision surrogate model with fewer sample 
points and to improve the model accuracy by using the adaptive 
infilling criterion to reduce the number of times the simulation 
software is used. Finally, the most suitable model is selected 
from multiple error criteria.

The rest of the paper is arranged as follows: Section 2 briefly 
introduces the mathematical principles and related formulas 
involved in this paper, which are mainly related to the 
calculation of the surrogate model; Section 3 introduces the 
research object of this paper, the unmanned AGV stacker truck, 
and constructs the related finite element model; Section 4 
constructs the relevant surrogates for the pallet rack with a 
single model and an ensemble model respectively; Section 5 

compares the performance of the two surrogate models in this 
optimal design, selects the most suitable model, and based on 
which the design and optimization of the pallet rack are 
implemented; and the conclusions of this study are discussed in 
Section 6.

2. Mathematical theories

2.1 KRG model
The KRG model [10], originally proposed by the South African 
geologist Danie Krige in 1951 for the exploration of mineral 
reserves, is an uncertainty-free interpolation model for 
estimating standard deviation minimization, which uses a 
covariance-controlled Gaussian process to generate continuous 
functions.

A generic KRG model can be expressed as follows:

y (x ) = f (x ) + z (x ) (1)

where y (x ) is the response function for the region of interest, 
f (x ) is a polynomial function used as an approximation to the 
underlying functional model, and z (x ) denotes a stochastic 
process with uncertainty in the mean of f (x ). The KRG model is 
an interpolation method through each sample point.

In this paper, we use the Gaussian correlation function：

R (xi , xj ) = exp [ − ∑
k =1

ndv

θk |xk
i − xk

j |
Pk ] (2)

where ndv  is the number of design variables, θ  and P  are 
parameters that vary flexibly with the variables, and |xk

i − xk
j |  

is the distance between xi  and xj  concerning the k -th variable.

The predicted value of ŷ (x ) at test point x  is formulated as 
follows：

ŷ (x ) = β̂ + r (x )R−1(y − f β̂ ) (3)

where y  is a column vector of sample response values, and 
when f (x ) is a constant vector, f  is a column vector of length n  
with all elements of 1. r (x ) is the correlation vector between the 
test pointx  and the sample points.

2.2 Ensemble surrogate models

Ensemble surrogate models are obtained by superimposing the 
weights of several individual surrogate models, and the key lies 
in solving for the appropriate weight coefficients. The current 
ensemble surrogate models can be divided into two types, 
namely, average weights and adaptive weights, according to the 
different forms of weight coefficients. This paper focuses on the 
adaptive weighted ensemble surrogate model used.

In 2018, Song et al. [15] proposed an ensemble surrogate 
model: Extended Adaptive Hybrid Functions (E-AHF). Three steps 
are proposed for model screening and adaptive weight 
calculation.

Step 1. Local measure estimation

ŝ 2(x ) = σ2[1 − ψT Ψ−1ψ + 1 − 1T Ψ−1ψ
1T Ψ−11 ] (4)

where σ  denotes the constant process variance of a Gaussian 
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field, and Ψ is the correlation matrix with the elements.

Step 2. Probability estimation

The baseline model can represent the global trend of the hybrid 
surrogate model, due to its high accuracy across the entire 
design space. Therefore, this prediction by the baseline model 
can be deemed as an expected value of the hybrid model. With 
the local prediction estimation s2 obtained from the previous 
local measure estimation, the probability coefficient of each 
individual surrogate model can be calculated by

Pi = exp{ − [yij − ybasej ]2

2sj
2 } (5)

where ybasej  is the prediction value of the baseline model at the 
j -th sample point, Pi  is the probability coefficient associated 
with the i -th individual surrogate model, and sj

2 is the local 
prediction estimation at the j -th sample point.

Step 3. Local weight determination

With the probability coefficient assigned to each surrogate 
model, the weight factors can be computed by

ωi =
Pi

∑
j =1

M

Pj

(6)

As P  is a function of the input vector x , the weight factors 
obtained for each individual surrogate model is adaptive to the 
input vector as well.

2.3 Maximizing EI

Unlike the PoI strategy, which focuses on the probability of 
improvement, the EI strategy is related to the amount of 
improvement expected to be obtained when adding a filling 
point and given a filling point, the EI is expressed in terms of a 
Gaussian error function as follows：

E [ I (x ) ] = (ymin − ŷ (x ) ) [ 1
2 + 1

2 erf ( ymin − ŷ (x )

ŝ 2 ) ] +

ŝ 1
2π

exp[ −(ymin − ŷ (x ))2

2 ŝ ]

(7)

It is observed from equations P [ I (x ) ]  and E [ I (x ) ]  that the 
expressions for both PoI and EI strategies contain global terms 
(s2) and local terms (I = ymin − Y (x )), indicating that both 
approaches can balance global exploration and local 
exploitation to some extent.

2.4 Performance criterion
In this paper, we use two criteria to evaluate the accuracy of the 
model. That is, the coefficient of determination (R2) is used as a 
global evaluation metric; the normalized max absolute error 
(NMAE) is used as a local evaluation metric to evaluate the 
global and local performance of different infilling strategies, 
respectively

R2 = 1 −

∑
i =1

ntest

(yi − ŷ i )2

∑
i =1

ntest

(yi − ȳ )2

(8)

NMAE = max |y − ŷ | 1
ntest ∑

i =1

ntest

(yi − ŷ i )2 (9)

where yi  denotes the true response at the i -th test point, and 
the predicted value of the model built by the surrogate model 
approach at the i -th test point is ŷ i , and ȳ  is the mean value of 
the true response at all test points, ntest denotes the number of 
test points.

Usually, R2 ranges from 0 to 1, and a larger d or a smaller NMAE 
means more accurate surrogates. When R2 is negative, it 
represents that the constructed surrogate model is trending 
opposite to the true model.

3. Establishment of finite element model of 
pallet rack

3.1 Structure of pallet racks

The AGV forklift involved in this paper is a battery-powered, 
unmanned material handling vehicle with automatic guidance, 
and its lifting platform consists of a pallet rack, two-wheel frame 
plates, a lifting plate, a guide rail, and a base plate, as shown in 
Figure 1. Among them, the pallet rack, as the structural main 
body of the lifting platform, is used to bear all the weight of the 
pallet containing materials and the loaded materials and is all 
the force components of the lifting platform, as well as the key 
structure of the lifting platform. As an important part of the AGV 
forklift, the reasonable design of the lifting platform directly 
determines the working ability of the forklift. In daily operation, 
the pallet rack will be subjected to more complicated forces in 
repeated lifting operations. Therefore, the structural design and 
optimization of the pallet rack will directly lead to the degree of 
deformation and reliability of each component of the AGV 
forklift in the course of operation, affecting the safety 
performance and working efficiency of the lifting platform, 
which in turn seriously affects the overall working life of the 
forklift.

Figure 1. Structure of lifting platform
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3.2 Simulation analysis of pallet racks

A 3-D model of the pallet rack was built using SolidWorks and 
imported into ANSYS for static analysis. The material used for 
the pallet rack is 25MnV alloy steel, Set the material properties 

in Workbench: density 7850 kg
m3 , modulus of elasticity 2.06 × 105 

Mpa, Poisson's ratio of 0.3. The free mesh division of the pallet 
rack is carried out, with a grid cell size of 10mm, and local 
encryption is carried out on the parts that are prone to stress 
concentration, and a total of 191599 mesh cells are generated 
with 424581 nodes. The main loads and constraints on the pallet 
rack include: fixed constraints on the lifting plate of the fixed 
pallet rack, which is used to limit the vertical displacement of 
the pallet rack; the downward pressure acting on the side plates 
of the channel steel F , and the gravity of the pallet rack itself G . 
The overall load diagram of the pallet rack is shown in Figure 2.

Figure 2. Overall load diagram of pallet racks

4. Constructing surrogate model for pallet 
racking

Surrogate model method is a mathematical analysis model 
method, which belongs to a branch of supervised machine 
learning, and has gained wide attention and research in many 
fields such as mechanical simulation, ecological modelling, 
geological statistics, artificial intelligence, etc., due to its ability 
to quickly and effectively achieve the approximate fitting of 
multidimensional variable complex systems based on limited 
data information. Surrogate modeling technology does not 
need to understand the physical meaning between input 
variables and output responses, and can only use the data itself 
to obtain an approximate mathematical model, so it can be 
applied to the optimization design and analysis where the 
physical meaning between the inputs and outputs is not clear, 
and the computational cost is high, and it has the advantages of 
good fitting accuracy, low cost, high efficiency, and so on. The 
application process of the surrogate model in engineering in 
general is shown in Figure 3, which mainly includes three 
modules: problem analysis, modelling analysis and result 
analysis.

4.1 Identification of design variables

As the main stress structure of the pallet rack, the channel steel 
and diagonal reinforcement is an important structure to 
support the pallet rack frame and transfer its stress, and its 
strength also determines whether the forklift truck can 
complete the engineering transport work more efficiently and 
safely. Therefore, the structural optimization of channel steel as 

Figure 3. Flow of application of surrogate model in engineering

well as diagonal tie bars can further reduce the stress and 
deformation while ensuring the strength, reduce the mass, and 
improve the economy and overall stability. After clarifying the 
overall structural weaknesses, this paper selects four design 
variables for the channel section and five design variables for 
the thickness of the diagonal bar as the optimization 
parameters, as shown in Figure 4, which are the height x1, width 
x2, web thickness x3 and flange thickness of the channel x4 and 
the thickness of the diagonal bar x5, respectively. The range and 
initial values of the corresponding design variables are shown 
in Table 1.

Figure 4. Schematic diagram of the design variables of the pallet racks

Table 1. Design variable size parameters and range of values

Design variables Range of values (mm) Initial value (mm)
Height of channel x1 90~120 105

Width of channel x2 37~53 45

Thickness of web x3 6.5~8.5 7.5

Flange thickness x4 7.5~9 8.25

Thickness of diagonal reinforcement x5 12~20 16

4.2 Design of experiment

In the application of the surrogate model in engineering shown 
in Figure 4, the design of experiments (DoE) is the first step in 
constructing the surrogate model, and it is also the key step in 
constructing the surrogate model, the essence of which is to 
generate the sample points in the region of interest, and a good 

https://www.scipedia.com/public/File:Review_120867196377-image2.png
https://www.scipedia.com/public/File:Review_120867196377-image2.png
https://www.scipedia.com/public/File:Review_120867196377-image3.jpeg
https://www.scipedia.com/public/File:Review_120867196377-image3.jpeg
https://www.scipedia.com/public/File:Review_120867196377-image4.jpeg
https://www.scipedia.com/public/File:Review_120867196377-image4.jpeg


https://www.scipedia.com/public/Zhang_et_al_2023i 5

W. Zhang, Y. Lu, L. Liye, Y. Mei and Z. Baochang, Adaptive ensemble surrogate-based optimization and analysis of 
forklift pallet racks, Rev. int. métodos numér. cálc. diseño ing. (2023). Vol. 39, (4), 39

DoE method is able to extract more compliant sample points 
and to construct a more accurate model with a smaller amount 
of data. The DoE methods can be divided into static sampling 
and adaptive sampling. Static sampling, means that the training 
points needed to construct the surrogate model are extracted 
at one time. Currently, widely used static sampling methods 
include Latin hypercube sampling (LHS) [16], Fractional factorial 
design (FFD) [17] and central composite design (CCD) [18]. In 
static sampling, the training points are independent of the 
constructed surrogate model, i.e., static sampling cannot learn 
from known samples.

The adaptive infilling strategy is designed to overcome the 
limitations of static sampling independent models, using the 
results of the currently constructed surrogate model, and 
selecting new sample points that are more conducive to the 
construction of an accurate model through the "infilling 
strategy" to improve the accuracy of the surrogate model 
iteratively [19]. Typical infilling strategies include Statistical 
lower bound (SLB) [20] strategy, maximizing probability of 
improvement (PoI) strategy, maximizing expected improvement 
(EI) strategy, etc. The EI strategy has been used by most 
researchers, and the EI strategy has been used by most 
researchers. etc. Among them, the EI strategy has been 
confirmed by most studies to have better performance in local 
exploitation and global exploration, and it is one of the most 
widely used infilling strategies nowadays. In this paper, the EI 
strategy ischosen as the infilling strategy.

According to the process of constructing the surrogate model, 
after determining the range of design variables, LHS is used to 
select points for the experimental design, 60 points are 
selected, and the corresponding maximum stress and 
maximum deformations under the relevant loads are calculated 
using simulation, of which 10 groups of data are used to 
construct the low-precision surrogate model, and the remaining 
50 groups of data are used as a database, which is used to 
provide response values for the new samples added at each 
iteration using the EI adaptive infilling strategy. The remaining 
50 data sets are used as a database to provide response values 
for new sample points added at each iteration when using the 
EI adaptive infilling strategy, and the 50 data sets can also be 
used as a test set to examine the global and local accuracy (R2 
and NMAE) of the constructed surrogate models. Figure 5 
shows the distribution of the 60 groups of design variables in 
the design space, and it can be clearly seen that the training 
and test points are distributed in almost the whole design space 
with good space filling and projection, and the test and training 
points are interspersed with each other, which indicates that 
the sampling point analysis meets the requirements.

4.3 Constructing surrogate model for pallet 
racking

In order to better reduce the cost brought by simulation 
experiments, this paper uses the EI infilling method to gradually 
guide the updating of the model and improve the accuracy of 
the surrogate model, therefore, when constructing the 
surrogate model, 10 sets of data will be used to construct the 
low-precision single surrogate model KRG and the low-precision 
ensemble surrogate model E-AHF, respectively, and according 
to the flow of the modelling in Figure 3, the model will be 
judged based on the accuracy judging criterion (R2 and NMAE) 
for the accuracy, and use the EI strategy to iteratively improve 
the accuracy until the surrogate model reaches a usable 
accuracy (usually R2 ≥ 0.8), and in order to compare the 
performance of the single surrogate model and the ensemble 
surrogate model in this optimization, the construction of the 

Figure 5. Distribution of training and test points

surrogate model will be guided by the KRG model and the E-
AHF model to construct the models of the design variables with 
respect to the deformation, mass, and stresses, respectively. 
The bar charts in Figure 6 show the performance of the two 
different models with 10 sample points with global metrics (R2) 
and local metrics (NMAE) as references.

(a) Accuracy for deformation (b) Accuracy for stress (c) Accuracy for mass

Figure 6. Comparison of low precision surrogate models

 It is obvious through Figure 6 that 10 sample points are not 
capable of constructing a high-precision model, but in the case 
of limited data, the ensemble surrogate model E-AHF still 
exhibits higher accuracy, and the KRG model is superior in 
terms of scope of applicability and degree of accuracy in the 
single surrogate model, but the comprehensive comparison of 
the three response objectives of pallet racking's deformation, 
stress, and mass is not as good as the E-AHF model, whether it 
is in terms of global accuracy or local accuracy.

After the low-precision model is constructed, the EI strategy is 
used to guide the selection of new sample points based on the 
initial model, and one new sample point is selected to be added 
to the training set at each iteration until the model stops 
iterating when it reaches a usable accuracy. Figure 7 
demonstrates a comparison of the accuracy of the KRG model 
and the E-AHF model after the convergence of the iterations. 
Figure 8 compares the number of sample points used to 
construct the model after reaching the usable accuracy for both 
models. It can be seen that the models constructed by both KRG 
and E-AHF reach high accuracy after the EI infilling strategy, but 
comparing the data in Figure 7, the E-AHF model still has an 
advantage in terms of global accuracy and local accuracy in 
deformation, stress and mass. Comparing the line graph in 
Figure 8, it can be seen that the same model that achieves 
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R2 ≥ 0.8, the E-AHF model can achieve the corresponding 
accuracy with fewer training points, which means that fewer 
times of the EI infilling strategy is used, and when put in the 
simulation experiments, it means that fewer times of the 
simulation are carried out, which saves the cost and time, and 
objectively proves the superiority of the ensemble surrogate 
model, which is represented by the E-AHF, compared with the 
single surrogate model. The exact number of additional sample 
points is shown in Table 2.

(a) Accuracy for deformation (b) Accuracy for stress (c) Accuracy for mass

Figure 7. Comparison of high-precision surrogate models

(a) KRG (b) E-AHF

Figure 8. Comparison of the number of infilling points for the two surrogate models

Table 2. Comparison of the number of infilling points for the two surrogate models

Response
KRG E-AHF

Initial points Additional points Initial points Additional points
Deformation 10 8 10 7
Stress 10 11 10 11
Mass 10 5 10 6

5. Optimization results and analysis

5.1 Definition of problem

The KRG model and the E-AHF model presented above were 
used instead of the simulation model for optimization and 
design. In the optimization of the entire pallet rack, deformation 
and mass are the two objectives that need to be paid attention 
to during the optimization process, but in fact, these two 
optimization objectives are contradictory to each other, as a less 
deformed structure is more rigid and corresponds to a higher 
mass, so it is difficult to balance the two ends of the spectrum 
during the design process. Reviewing the specific situation in 
engineering applications, it is not difficult to find that compared 
with lightweight, higher structural strength is the focus of 
design considerations, higher strength to ensure the safety 
factor of machinery in the project, as well as a longer working 
life, placed in this optimization design process, smaller 
deformation is the priority of the experimental findings of the 
conflict between the object.

Therefore, in this paper, we will calculate the optimal solution of 
the two constraint problems for the optimization objective and 
compare the experimental results to conclude with the same 
number of total constraints, which are stress constraints, 
deformation constraints, and mass constraints, respectively. 
Where [T] and [M] are the permitted values of deformation and 
mass respectively. Considering the specific application and 
working conditions, the geometries of non-standard channels 
and diagonal ties are constrained. For the optimization problem 
described below, this paper uses a single-objective Genetic 
algorithm (GA), and the optimization problem for the whole 
pallet rack is described as:

Question 1: Deformation constraints, stress constraints and 
dimensional constraints

min F (x1, x2, x3, x4, x5) = M

Subject to σmax ≤ [σ ] = 648.1

Tmax ≤ 2.387

90 ≤ x1 ≤ 120

37 ≤ x2 ≤ 53

6.5 ≤ x3 ≤ 8.5

7.5 ≤ x4 ≤ 9

12 ≤ x5 ≤ 20

(10)

Question 2: Mass constraints, stress constraints and dimensional 
constraints

min F (x1, x2, x3, x4, x5) = T

Subject to σmax ≤ [σ ] = 648.1

Mmax ≤ 252.78

90 ≤ x1 ≤ 120

37 ≤ x2 ≤ 53

6.5 ≤ x3 ≤ 8.5

7.5 ≤ x4 ≤ 9

12 ≤ x5 ≤ 20

(11)

where F (x ) is the optimization objective, T  is the total 
deformation and M  is the total weight of the pallet rack 
structure.

The specific results of the two optimization problems are shown 
in Tables 3 and 4, respectively, and compare the predicted and 
true responses of the objective function and constraints. From 
the information in the table, it can be seen that the structural 
value derived from minimizing mass as the optimization 
objective with deformation and stress as constraints. Although 
the mass reduction is larger, the optimized resultant 
deformation and stress reduction is small, and this degree of 
lightweight has limited cost reduction in practical engineering 
applications, so the results of the optimization problem are not 
considered. On the other hand, the structural values derived by 
using mass and stress as constraints and minimizing 
deformation as the optimization objective not only better 
reduce the deformation of the pallet rack, but also significantly 
reduce the stress values, and even a small amount of reducing 
the mass of the pallet rack to meet the constraints is a better 
result. It is worth mentioning that in both optimization 
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problems, the E-AHF model shows better performance in terms 
of all the indicators, and the constraint and objective functions 
written in its model give better guidance to the GA algorithm to 
get better results.

Table 3. Comparison of optimization results of the KRG and E-AHF for question 1

Response
x1 

(mm)
x2 

(mm)
x3 

(mm)
x4 

(mm)
x5 

(mm)
Deformation 

(mm)
Stress 
(Mpa)

Quality 
(Kg)

Before optimization 105.0 45.0 7.5 8.25 16.0 2.39 648.1 252.7

After optim
ization

E-AHF 107.6 41.9 6.5 8.0 12.3 2.19 446.0 246.3
KRG 105.8 44.3 6.9 8.1 12.2 2.25 428.2 246.9

Table 4. Comparison of optimization results of the KRG and E-AHF for question 2

Response
x1 

(mm)
x2 

(mm)
x3 

(mm)
x4 

(mm)
x5 

(mm)
Deformation 

(mm)
Stress 
(Mpa)

Quality 
(Kg)

Before optimization 105.0 45.0 7.5 8.25 16.0 2.39 648.1 252.7

After optim
ization

E-AHF 109.8 42.7 6.9 8.7 13.2 1.98 407.7 249.7
KRG 110.6 41.8 6.7 8.6 13.9 1.99 443.6 249.7

 Based on the structural values derived from the optimization 
objective of minimizing deformation, in order to check the 
accuracy of the optimization results (incorporating stress, 
deformation and mass) predicted by the two surrogate models 
for the values calculated by the optimization algorithms, the 
optimization results were brought into the simulation model to 
obtain the real results and the errors were obtained by 
comparing them with the predicted values of the models, which 
are shown in Tables 5, 6 and 7, respectively.

Table 5. Deformation results of before and after optimization

Optimal Model After Optimization Before Optimization Decrease
Prediction True Error

E-AHF 1.99 1.98 0.5% 2.39 17.2%
KRG 1.98 1.99 0.5% 2.39 16.7%

Table 6. Stress results of before and after optimization

Optimal Model After Optimization Before Optimization Decrease
Prediction True Error

E-AHF 394.3 407.7 3.3% 648.1 37.1%
KRG 430.5 443.6 3.0% 648.1 31.6%

Table 7. Quality results of before and after optimization

Optimal Model After Optimization Before Optimization Decrease
Prediction True Error

E-AHF 252.7 249.7 1.2% 252.7 1.2%
KRG 252.7 249.7 1.2% 252.7 1.2%

 From the prediction of the optimized results, the errors of the 
pallet rack shape variations of the E-AHF and KRG models are 
0.5% and 0.5%, respectively. The errors of the stresses of the E-
AHF and KRG models are 3.3% and 3.0%, respectively. The 
errors of the pallet rack masses of the E-AHF and KRG models 
are 1.2% and 1.2%, respectively. Taken together, from the 
analysis of the accuracy of model prediction, the KRG model 
undoubtedly has better adaptability and stronger performance. 
From the comparison between before and after optimization, 
the reduction of pallet rack deformations by E-AHF and KRG 
models is 17.2% and 16.7%. The reduction of pallet rack stresses 
by E-AHF and KRG models is 37.1% and 31.6%, and the 
reduction of pallet rack mass by E-AHF and KRG models are 
1.2% and 1.2%, respectively. Taken together, the optimization 
design based on the E-AHF model is more excellent and 
adaptable to engineering examples. Therefore, the optimal 
solution obtained from the E-AHF model is brought into the 
simulation model to obtain the optimized results, as shown in 
Figure 9 .

(a) Deformation after optimization (b) Stress after optimization

Figure 9. Optimized cloud maps

5.2 Global sensitivity analysis

Global sensitivity analysis (GSA) is the study of the effects of 
simultaneous changes in different design variables throughout 
the design space on a system or model, with the aim of 
implementing dimensionality reduction and simplifying the 
model in high-dimensional cases. The most representative of 
GSA, Sobol global sensitivity analysis, which is a standard 
deviation-based sensitivity analysis method, is used in this study 
[21]. This method can simultaneously calculate the first-order 
sensitivity index and global sensitivity index of design variables, 
in which the first-order sensitivity index indicates the impact of 
individual design variables, while the global sensitivity index 
takes into account the interactions between individual variables. 
Its specific calculation method is as follows.

Given any product function in n-dimensional space, it can be 
expressed as:

f (x ) = f0 + ∑
i

fi (xi ) + ∑
i <j

fij (xi , xj ) + f1,2,…,n (x1, x2, …, xn ) (12)

where xi  denotes the i -th variable and xj  denotes the j -th 
variable.

The total standard deviation and partial standard deviation of 
f (x ) are, respectively:

D = ∫f2(x )dx − f0
2 (13)

Di1…is = ∫fi1…is
2 (x )dxi1

…dxis
(14)

 The first-order sensitivity indices for each variable are:

Si =
Di1…is

D
(15)

where Si  denotes the first-order sensitivity index of the i -th 
variable. The global sensitivity index Sti  of the i -th variable is 
then the sum of the sensitivity indices of each order of the i -th 
variable.

Based on the E-AHF model, the GSA analysis of the pallet rack is 
carried out, and the results are shown in Figure 10. It can be 
clearly seen that the channel height x1 has the greatest 
influence on the shape variables of the pallet rack, and both the 
first-order sensitivity index and the global sensitivity index are 
much higher than the remaining four design variables; 
whereas, the one that has a greater influence on the stress of 
the pallet rack is the channel flange thickness x4, and its 
sensitivity index is also much higher than that of the other four 
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variables; whereas, for the pallet rack mass, it can be seen that, 
except for the web thickness x3, the rest of the design variables 
all have a greater influence. In summary, in the design of a 
pallet rack, the highest priority should be given to the height of 
channel steel x1 which has the greatest influence on its shape 
variables, to ensure the overall safety and pressure resistance of 
the lifting platform.

(a) GSA for deformation (b) GSA for stress (c) GSA for quality

Figure 10. GSA based on E-AHF model

6. Conclusion
Taking the pallet rack of the lifting platform of the unmanned 
AGV stacker truck as the research object, the parametric design 
of the pallet rack is carried out by using SolidWorks and ANSYS, 
and then the design variables are selected, the design space is 
determined, and 60 sample points are selected by using the LHS 
method, of which 10 are used as a group for constructing an 
ensemble surrogate model represented by the E-AHF and a 
single surrogate model represented by KRG, the remaining 50 
sample points are used as a group as a sample point library for 
the EI plus point strategy to improve the accuracy of the model 
by EI guidance, and the accuracy of two evaluation criteria can 
be tested. The remaining 50 sample points are used as the 
sample point bank for the EI infilling strategy, which is used to 
improve the accuracy of the model through the EI guidance, 
and at the same time, the accuracy of the constructed surrogate 
model can be examined by comparing the two evaluation 
criteria, which include the global and local indicators. Stress, 
mass and deformation are modelled using the two surrogate 
models, and two unused optimization problems with stress and 
deformation as constraints, and stress and mass as constraints 
are established, and Matlab Optimization Toolbox is used to 
optimize the models and compare the results of the two 
optimization problems, which show that the optimized mass 
has been reduced by 1.2%, and the deformation variable has 
been reduced by 17.2% compared with the initial deformation 
variable, which fully meets the objectives of the design, It fully 
meets the objectives of the optimized design. Finally, the E-AHF 
model is used as the basis for the global sensitivity analysis of 
the five design variables, and it is found that the most important 
shape variable is the length of the channel, which highlights the 
application of the surrogate model in the global sensitivity 
analysis, and at the same time provides a new research solution 
for the optimization of the forklift truck lifting platform.
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