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Abstract
MicroRNAs (miRNAs) play essential roles in various biological regulatory processes and are 
closely related to the occurrence and development of complex diseases. Identifying miRNA-
disease associations (MDA) is of great value for revealing the molecular mechanisms of 
diseases and exploring therapeutic strategies and drug development. Recently, most 
computer-aided MDAs identification approaches design their models tend to base on a 
bipartite graph (i.e., miRNA-disease network), ignoring the endogenous RNAs(ceRNAs) 
hypothesis in post-transcriptional control such as gene negative regulation by targeting 
mRNAs. Besides, the existing MDA bipartite graph could not make convincing predictions 
for MDA, only relying on collaborative filtering followed by the recommended system. To 
address the above issues, we propose a TDCMDA (Tripartite graph-based integrating Dual-
layer Contrast learning into graph neural network for MDA prediction), which aims to 
integrate dual-layer contrast learning into graph neural network under the miRNA-disease-
gene tripartite graph. Different from the existing approaches, TDCMDA introduces not only 
rich biologic regulatory relationships hidden in ceRNAs by a tripartite graph but also 
employs self-supervised dual-layer contrast learning to alleviate sparse label disadvantage. 
TDCMDA can learn node feature representation across three subgraph spaces such that the 
link representation between miRNA and disease can be obtained more biology semantically. 
Comprehensive experiments indicate TDCMDA is superior to several state-of-the-art 
approaches, and the case studies show that TDCMDA can convincingly detect novel MDA 
pairs and can be a promising tool for MDA identification.

 OPEN ACCESS

Published: 28/08/2023

Accepted: 18/07/2023

DOI: 
10.23967/j.rimni.2023.08.001

Keywords:
tripartite graph
dual contrast learning
graph convolutional network
miRNA-disease association 
prediction

Revista Internacional de Métodos 
Numéricos para Cálculo y Diseño 
en Ingeniería

Correspondence: Jing Bai (1838460168@qq.com), Ping Zhang (pingzhang@webmail.hzau.edu.cn), Li Li 
(li.li@mail.hzau.edu.cn). This is an article distributed under the terms of the Creative Commons BY-NC-SA license 1

1. Introduction
MicroRNAs (miRNAs) are a family of non-coding, single-stranded 
RNA molecules with an average length of 22 nucleotides that 
are produced by endogenous genes and play a number of 
crucial regulatory functions in cells [1]. Their abundance, 
variable expression and diversity of possible regulatory targets 
imply that miRNA gene inactivation or abnormalities are linked 
to the emergence of a wide spectrum of human disorders. 
Numerous studies have demonstrated the link between the 
development of disorders, including thymic insufficiency, 
muscular dystrophy, viral infections, and cancer, and the 
components involved in their processing and functional 
functions [2–5]. Therefore, the study of the identification 
between miRNAs and diseases plays a crucial role in elucidating 
the pathogenesis of diseases and represents a breakthrough in 
the understanding of the biological functions of miRNAs [6].

In general, the correlations between miRNA and disease are 
validated using two different biological experimental methods: 
qPT-PCR [7] and Northern blot [8], but they are time-consuming 
and expensive. Thanks to the continuous progress of deep 
learning, more fast, efficient and affordable computer-aided 
MDA prediction techniques are being developed, leading to 
great changes to miRNA research. With modern deep learning 
technologies, MDA prediction can be conducted as an intelligent 
approach and to aid traditional experimental methods, which 
typically involve much expense and energy.

In recent years, to provide effective screening methods, more 

and more machine learning models have been proposed for 
MDA prediction. They mostly fall into three broad types, 
biological feature-based approaches, similarity-based 
approaches, and graph-based approaches. The primary 
biological aspect of the first type approach is to identify MDAs 
by using distinct biological characteristics of miRNA and disease 
as eigenvalues. For instance, Ma et al. developed a unique 
technique dubbed SFGAE with the goal of creating miRNA-self 
embeddings and disease-self embeddings that were 
independent of network interactions between two different 
types of nodes [9]. A machine model based on an ensemble of 
decision trees was introduced by Chen et al. [10]. By calculating 
the statistical measurements for the miRNA and disease, the 
theoretical graph measurements, the corresponding matrix 
factorization results for each MDA pair, and the feature vector 
was retrieved. Additionally, the theoretical feature profile for 
graphs and the MDA statistical feature profile were projected 
into a single subspace using the computational model 
LRSSLMDA [11]. Although these techniques helped identify MDA 
to some extent, their effectiveness is still constrained by the fact 
that they ignore the intricate connection and interplay between 
miRNA and disease.

The primary goal of the similarity-based methods as the second 
category approaches is to identify miRNAs with comparable 
functions that are more probable to be connected to related 
disorders. For example, Zhang and Zheng et al. put forward a 
prediction approach based on miRNA similarity; however, Zhang 
et al. depended on the similarity between the miRNA itself and 
the phenotype, whereas Zheng et al. [13], and Xuan et al. [14] 
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applied semantic similarity to learn the MDAs based on 
weighted k most similar neighbors [14]. Additionally, NetGS was 
suggested as a way to investigate the similarities throughout 
the whole network, but their effectiveness is constrained by the 
variety of semantic expressions and the uneven quality of the 
available literature [15].

Graph-based approaches have also seen a lot of use recently. A 
graph may display the intricate details of neighbor topology 
between several biological items, like miRNA, disease, and 
genes. This approach compensates for the previous 
shortcomings by focusing on the topology of the nodes and 
various classifier algorithms. The trend of predicting the 
connection between miRNA and disease is toward graph-based 
methods [16]. Zheng et al. [17] specifically proposed a graph 
embedding model in detail, called MLMDA, to extract 
representative features through a deep self-encoder neural 
network and successfully predict possible associations between 
miRNA and diseases using a random forest classifier. MLMDA's 
fundamental concept was to represent the MDA issue as a link 
prediction in graphs. On this basis, approaches based on graph 
convolutional networks have been presented by Han et al. [18] 
and Li et al. [19]. By extracting subgraphs around MDA pairs 
from the network and learning the structural features of the 
subgraphs through labeling algorithms and neural networks, a 
heterogeneous network was constructed by Zhang et al. [20]. In 
order to predict miRNA-disease connections at the depth level 
utilizing graph neural networks (GNNs) and miRNA sequence 
features, Yan et al. created an end-to-end deep learning 
approach [21]. In addition, Wang et al. offer a computational 
framework called MKGAT that makes use of dual Laplacian 
regularized least squares and graph attention networks (GATs) 
to find possible connections between miRNAs and disease [22].

However, the majority of network-based techniques simply take 
into account qualities from independent tiers. For instance, 
some techniques solely think about the distinctive 
characteristics of miRNA and disease (such as neighbor 
topology and similarities between miRNA and disease). Besides, 
the existing MDA bipartite graph could not make convincing 
predictions for MDA, only relying on collaborative filtering 
followed by the recommended system. The model's stability and 
accuracy are still restricted by the inadequate consideration of 
characteristics. These approaches design their models tend to 
base on the bipartite graph (i.e., miRNA-disease network), 
ignoring the competing endogenous RNAs(ceRNAs) hypothesis 
in post-transcriptional control such as gene negative regulation 
by targeting mRNAs, which can reflect the property of miRNA to 
some extent [23]. MiRNA has evolved with very little change. By 
identifying and encouraging the formation of the gene silencing 
complex RISC through MREs in the 3'UTR region of the target 
gene, a miRNA can control the activity or stability of many target 
genes; many miRNAs can also work together to control the 
same target gene. Studies have shown that ceRNAs in 
malignant tumor cells can competitively bind to MREs targeting 
microRNAs in the 3'UTR region of proto-oncogenes, oncogenes, 
and mRNAs of various tumor-related signaling pathway factors, 
thereby promoting or inhibiting microRNA-related functions 
and playing an important role in tumourigenesis, progression, 
invasion, metastasis and even drug therapy [24]. For example, 
Poliseno et al. found that the pseudogene PTENP1 transcript in 
prostate cancer cells could increase the expression level of PTEN 
by competitively binding miR-19b, miR-20a, miR-214, and other 
microRNAs targeting PTEN. Consequently, the PI3K/Akt 
signaling pathway is prevented from being activated, which 
eventually prevents the growth of tumor cells; conversely, the 
inhibition of PTENP1 expression was accompanied by a 
downregulation of PTEN expression and an increase in tumor 
cell proliferation [25]. Yet, existing research approaches ignore 
the wealth of knowledge contained in genes associated with 

miRNAs and disease. In fact, this information can better reflect 
the properties of miRNAs and diseases.

In light of this, we think that merging the gene and miRNA-
disease network is essential for developing a more precise and 
beneficial strategy. We supported this position by suggesting a 
TDCMDA (Tripartite graph-based integrating Dual-layer 
Contrast learning into graph neural network for MDA 
prediction), which aims to integrate dual-layer contrast learning 
into graph neural network under the miRNA-disease-gene 
tripartite graph. An auto-coder based on graph convolution was 
used to integrate miRNA-disease, miRNA-disease-gene, and 
disease-gene network topologies. A self-supervised learning 
approach was used to perform dual-layer comparative learning 
across networks. The model incorporates three deep learning 
branches. One branch consists of miRNA-disease and disease-
gene heterogeneous graphs. Given the inherent heterogeneity 
across various things, TDCMDA utilizes cross-domain 
transformation to remove heterogeneity and may be able to 
acquire more expressive embeddings for MDA prediction. A 
three-layer convolutional network with a heterogeneous graph 
made up the second branch. In a single heterogeneous 
network, it aims to extract adjacent topological data and 
establish relationships (associations and interactions) among 
biological constituents. The heterogeneous network adequately 
took into account the many biological elements, such as miRNA, 
disease, and genes. The third branch was dual-layer 
comparative learning, which emphasizes the importance of 
incorporating self-supervised learning into the model to provide 
auxiliary information for graph representation learning. The 
approach exceeds other frequently used methods in the 
majority of performance assessment measures, according to 5-
fold cross-validation results, which show that the method has an 
AUC value of 0.9495 and an AUPR value of 0.9509. The ability of 
TDCMDA to predict potential miRNA-disease associations was 
further confirmed by case studies of lung neoplasms, breast 
neoplasms, and esophageal neoplasms, and TDCMDA can be 
used as a useful tool for screening reliable miRNA-disease pairs.

2. Materials and methods

2.1 Overview of TDCMDA
The aim of this article was to create a cutting-edge deep 
learning framework called TDCMDA., which integrates dual-
layer contrast learning into a graph neural network under 
miRNA-disease-gene tripartite graph for MDA prediction. Figure 
1 displays the working flow of TDCMDA, which has three 
primary branches. In the first branch, TDCMDA uses a cross-
domain transformation to remove heterogeneity and can learn 
more expressive embeddedness for MDA prediction, taking into 
account the miRNA-disease and disease-gene heterogeneity 
networks and the underlying heterogeneity among different 
entities. The cosine similarity combined with the graph 
convolutional network module is applied to understand how 
node pairs are represented in the network. In the second 
branch, mRNA-disease-gene heterogeneous networks are taken 
into account to preserve the complete pathway information, 
concentrating on leveraging correlations, associations, and 
interactions between similarities to learn the local 
representation of miRNA-disease nodes. In a single 
heterogeneous network, it aims to extract adjacent topological 
data and establish relationships (associations and interactions) 
among biological constituents. The heterogeneous network 
adequately took into account the many biological entities, such 
as miRNA, diseases, and genes. In the third branch, cross-view 
contrast learning was first performed between the two views for 
miRNA-disease and disease-gene to learn the comprehensive 
node embedding at the local level.In particular, the graph 
neural network model used in each layer branch is the same, 
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which is GCN, and the number of layers is set to 2. Then the 
lateral view contrast learning was performed between the 
miRNA-disease-gene tripartite map and the local view to learn 
the discriminative node embedding under the global view. A 
two-layer contrast learning was performed to underline how 
crucial it is to include self-supervised learning in the model to 
provide auxiliary information for graph representation learning.

Figure 1. Overall TDCMDA structure. Three heterogeneous 
networks on top are the input to TDCMDA. In these networks, 
various forms correspond to various entities. Based on the 
heterogeneous GCN module, the macroscopic attributes of all 
entities are learned, feature fusion and splicing are carried out, 
and finally comparative learning is carried out

2.2 Dataset preparation

In this study, we used the HMDD v3.0 [26] and CTD [27] 
databases as our primary training datasets. There are 671 
miRNAs, 244 diseases, and 7243 experimentally supported 
miRNA-disease association entries in database HMDD v3.0, 
which represented the known human miRNA-disease 
connections. The CTD database is the Comparative 
Toxicogenomics Resource. It is a freely accessible resource that 
examines associations between chemicals, genes, phenotypes, 
diseases, and the environment, from which we have extracted 
data for 7986 disease-gene associations.

2.3 Graphical convolutional networks

GCN is a scalable semi-supervised learning method that uses 
effective convolutional neural networks that act directly on the 
graph as its foundation [28]. It is the selection of a convolutional 
architecture motivated by a local convolution of the spectral 
graph using a first-order approximation, scaling the number of 
graph edges increases linearly, and learning hidden layer 
representations that contain node characteristics and local 
graph structure. The established miRNA-disease collaboration 
view and disease-gene relationship view are encoded by the 
GCN approach, respectively. The trained GCN has served as a 
good training effect, and the GCN results are used as 

embedding representation nodes for subsequent prediction 
tasks and comparative learning.

2.4 Contrast Learning

Contrastive learning focuses on finding similarities between 
similar cases and identifying differences between unrelated 
ones. In the comparison process, distances between positive 
samples are shortened, while those between negative samples 
are lengthened.We used random sampling to randomly sample 
a portion of the unmatched or unlinked samples as negative 
samples.In contrast to generative learning, contrastive learning 
does not have to concentrate on the time-consuming specifics 
of examples but only needs to learn to set apart from between 
data at the feature space's abstract semantic level. As a result, 
the model and its optimization become more straightforward 
and universal.

2.5 Graph Convolutional network-based 
contrast learning prediction method

2.5.1 Construct experiment vector

The miRNA is described as vector M , where M = {m1, m2, …mN }. 
The disease is described as vector D , where D = {d1, d2, …dM }. 
The gene is described as vector G , where G = {g1, g2, …gL }. M , 
N , and L  denote M  diseases, N  miRNAs, and L  genes, 
respectively.

2.5.2 Construct heterogeneous graph

The miRNA-disease associations’ matrix X ∈ RN ×M  is defined 
where xij = 1 indicates that mi  associates with dj , miRNA mi  
engaged with disease dj ; otherwise xij = 0. Similarly, the 
disease-gene associations’ matrix Y  is defined where yij = 1 
indicates that di  associates with gj

Xij = {1, if mi associates with dj

0, otherwise
(1)

Yij = {1, if di associates with gj

0, otherwise
(2)

 In addition, to the miRNA-disease and disease-gene relationship 
matrix, we added the type of relationship between the disease 
and the gene as an edge to the heterogeneous graph species as 
well [29]. Let G = {(d , r , g )|d , g ∈ X , r ∈ R } , where d , r , and g  
stand for the head, relation, and tail of a triple, respectively; 
they are used to refer to the sets of relations in G .

2.5.3 Disease-disease similarity

For the (d , r , g ) triple in G , the graph embedding method RotatE 
proposed by Sun et al. was used to efficiently train the model 
using a new self-adversarial negative sampling technique [30]. 
The distance function is defined as:

dr (d , g ) = ∥ d ∘ r − g ∥ (3)

and ∘  is the Hadmard (or element-wise) product. Then, 
recursively learn the representation of diseases and genes in 
graph G

ed
(k +1) = 1

Mi
∑

(r ,g )∈Mi

er ⋅ eg
(k ) (4)

https://www.scipedia.com/public/File:Draft_Ping_628687260-image1-c.png
https://www.scipedia.com/public/File:Draft_Ping_628687260-image1-c.png


https://www.scipedia.com/public/Bai_et_al_2023a 4

J. Bai, P. Zhang and L. Li, TDCMDA: Tripartite graph-based integrating dual-layer contrast learning into graph 
convolutional network for miRNA-disease association identification, Rev. int. métodos numér. cálc. diseño ing. (2023). 
Vol. 39, (3), 28

where ed
(k ) denote the representations of disease, which 

recorded signals associated with (k-1)-hop gene neighbours.

Then, based on the disease representation just obtained, a 
cosine similarity matrix of disease di  and disease dj  is 
constructed, which was calculated as:

Cos (di , dj ) =
(edi

)T ⋅ edj
∥ edi

∥ × ∥ edj
∥ (5)

 Thus, we obtained the cosine similarity matrix of the disease 
and named it C . In order to accelerate convergence in gradient 
descent, we normalized the obtained matrix C  as follows:

C̆ = (D )
− 1

2 C̆ (D )
− 1

2 (6)

 By the above method, we obtained a disease-disease similarity 
matrix.

To more effectively understand the disease representation and 
capture the disease-disease similarity, the disease 
representations of the different layers were summed to get the 
complete representation of the disease, which was calculated as 
follows:

zd
1 = ∑

j ∈N (i )

C̆ ej
0 + ∑

j ∈N (i )

C̆ ej
1 + ⋯ + ∑

j ∈N (i )

C̆ ej
M (7)

 The disease's number of neighbors is indicated by the symbol 
N (i ). C̆  denotes the normalized sparse adjacency matrix just 
generated, and M  represents the number of diseases, setting 
the stage for the comparative learning that follows.

2.5.4 Application of graph convolutional 
network models to miRNA-disease graph

For the miRNA-disease graph, an L-layer polymerization was 
performed using the GCN method as follows:

H(l +1) = σ (D~
− 1

2 A~ D~
− 1

2 H(l )W(l )) (8)

where A~ = A + IN , A  is the adjacency matrix, IN  is the unit 
matrix, so A~  is the connection matrix for adding self-

connections; Dii
~ = ∑

j

Aij
~ , D~  can be understood as the diagonal 

is the degree matrix of node i ; W(l ) is the weight matrix of the l-
layer of the neural network, σ ( ⋅ ) is the activation function, H(l ) 
is the activation matrix of the l-layer. Influenced by Bojchevski 
and Günnemann [31], we performed one-hot encoding of 
miRNA and disease, respectively, and obtained an initial vector 
as the first layer of the graph convolution input.

The graph convolution layer assigns separate processing 
channels for different types of edges, and transmits messages 
between edges on the graph through local graph convolution, 
which is an embedding structure that weights features

ud
m = 1

W × H ∑
m

M

∑
i =1

W

∑
j =1

H

Ud ( i , j ) (9)

um
n = 1

W × H ∑
n

N

∑
i =1

W

∑
j =1

H

Um (i , j ) (10)

 To achieve a complete depiction of miRNA and disease in the 
GCN layer, we then added up all the representations as follows:

zd
1′ = ud

0 + ud
1 + ⋯ + ud

m (11)

zm
2 = um

0 + um
1 + ⋯ + um

n (12)

2.5.5 The first layer of contrast learning

For the disease similarity zd
1  in the learned disease-gene map 

and the disease representation zd
1′ in the miRNA-disease map, 

the first contrast learning was performed, and the disease 
nodes in the two views were embedded to form positive 
samples. We used supervised contrastive learning [32]. In both 
views, any further node embeddings are classified as negative 
samples. Supervised layer one contrast learning was initiated.

With positive and negative samples defined, the contrast loss is 
as follows:

L1 = −1
2M − 1 ∑

i =1

2M

log
exp (zd

1 ⋅ zd
1′/τ )

∑
k =1

2M

l[k ≠i ] ⋅ exp (zd
1 ⋅ zd

1′/τ )

(13)

where l[k ≠i ] is a signal function that takes 0 when k = i , and 1 
otherwise. τ  is the temperature parameter for the optimization. 
It can be easily seen from the formula that the supervised 
contrast loss expands the number of positive samples. All the 
sub-data identical in label information are viewed as positive 
samples, the similarity between all positive samples is 
calculated, and then the weighted average is performed. This 
architecture can also better characterize within-class similarity 
due to the increased number of positive samples.

2.5.6 Learn feature representations in miRNA-
disease-disease graph.

The miRNA-disease-gene map was encoded using the graph 
convolution method, as shown in Equations 8 and 9, to obtain 
the representation em  and ed  of miRNA and disease. Then we 
sum all representations up to obtain zm

2′  and zd
2′:

zm
2′ = em

0 + em
1 + ⋯ + em

N (14)

zd
2′ = ed

0 + ed
1 + ⋯ + ed

M (15)

2.5.7 The second layer of contrast learning

The disease similarity features were fused by assigning different 
weights and added together to obtain the full representation zd

2  
of the disease, the calculation is as follows:

zd
2 = ∑

m

M

α ⋅ C̆ ed
m + β ⋅ ud

m (0.1 ≤ α , β ≤ 0.9) (16)

 The second layer of contrast learning was carried out under the 
same positive and negative sampling strategies, and the 
contrast loss value was calculated as follows:
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Lm
2 = −1

2N − 1 ∑
i =1

2N

log exp (zm
2 ⋅ zm

2′ /τ )

∑
k =1

2N

l[k ≠i ] ⋅ exp (zm
2 ⋅ zm

2′ /τ )

(17)

Ld
2 = −1

2M − 1 ∑
i =1

2M

log
exp (zd

2 ⋅ zd
2′/τ )

∑
k =1

2M

l[k ≠i ] ⋅ exp (zd
2 ⋅ zd

2′/τ )

(18)

 During training, the miRNA set has N  samples, and two 
branches have 2N  samples. The remaining 2N − 2 are all 
negative samples. The numerator is the similarity between 
positive samples, and the denominator is the similarity between 
negative samples. Loss is to make samples belonging to the 
same class closer and samples of different classes farther away. 
The same goes for the disease set. The second layer of contrast 
learns the total contrast loss as follows:

L2 = Lm
2 + Ld

2 (19)

2.5.8 Final loss calculation
The decoder we use is inner score, which applies the sigmoid 
function after linear transformation of the input to obtain the 
final prediction score.Using the approach suggested by Rendle 
et al. [33], the relationship of miRNA-disease was represented 
as a triple, where m represents miRNA, d  represents disease, 
and l  represents the associated label of miRNA-disease. A 
miRNA ranking function for each disease association was 
learned through the BPR model, maximizing the marginal 
probabilities described above

LBPR = − ∑
(m ,d ,l )

lnσ (f (m , d )) (20)

 By combining the first-layer and second-layer contrast losses 
generated previously with the BPR loss, the final loss function 
was obtained as follows:

LFinal = LBPR + ϵ (ρ ⋅ L1 + (1 − ρ ) ⋅ L2) (21)

here, ρ  is the hyperparameter set to determine the first-second 
contrast loss ratio, and ϵ  is the hyperparameter set to control 
the contrast loss.

3. Results and discussion

3.1 Parameter optimization

For the hyperparameters α , β , ε  and ρ  involved in TDCMDA, we 
use grid search to optimize. Firstly, the disease similarity of 
different weight combinations was cross-validated, and the 
optimal weight (α , β ) was obtained as (0.1, 0.9). The 
proportional hyperparameter and the loss hyperparameter in 
the loss function are then optimized to obtain the optimal value 
from (ε , ρ ) of (0.1, 0.1). The number of GCN layers is chosen 
from {2, 3, 4}, the training session epoch from {10, 20, 50, 100, 
200, 500} and the learning rate from {0.01, 0.001, 0.003, 0.0001, 
0.00001}. The outcomes are displayed in Figure 2. It can be seen 
that the optimal number of GCN layers is 2, the optimal epoch is 
400, and the best learning rate is 0.003.

(a) Layer

(b) Epoch

(c) Learning rate

Figure 2. Parameter analysis of TDCMDA

3.2 Performance Evaluation Metrics
To avoid data imbalance throughout the training phase, the 
number of data for the positive samples was randomly chosen 
to be equal to the amount of data for the negative samples. The 
TDCMDA model's performance was assessed using five-fold 
cross-validation by evenly dividing the training set into five 
parts, using the data from four of them as the training set and 
the data from the fifth as the test set. The average test error 
was used as the generalization error. The benefit of this is that 
all of the training set samples will inevitably become training 
data, and all of the test set samples will inevitably turn into 
pages. Data from the training set may be used more effectively.

The associated data in the test set were scored using the 
training model, and a threshold θ  was set so that when the 
score exceeded the threshold, the forecast result was positive, 
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and when it fell below the barrier, the outcome was negative. In 
order to forecast our model's performance and evaluate it 
against alternative approaches, we employed the following 
assessment criteria. After obtaining the above data, we used TP 
to represent the number of positive samples correctly predicted, 
FN to represent the number of positive group samples 
incorrectly predicted as negative, FP to represent the number of 
negative group samples incorrectly predicted as positive, and 
TN to represent the number of negative group samples 
correctly predicted. Based on these indicators, we used the 
following evaluation criteria to predict the performance of our 
model and to compare it with other methods.The TPR (true 
positive rate), FPR (false positive rate), Precision (precision), and 
Recall (recall rate) were calculated using the following equations 
[34]:

TPR = TP
TP + FN (22)

FPR = FP
TN + FP (23)

precision = TP
TP + FP (24)

recall = TP
TP + FN (25)

 We used the method proposed by Bradley as the criteria for 
evaluating the model, which is area under receiver operating 
characteristic curves and area under precision-recall curves [35]. 
The results are shown in Figure 3.

(a) (b)

Figure 3. Five-fold cross receiver operating characteristic (ROC) 
and precision-recall (PR) curves of TDCMDA. (a) Receiver operating 
characteristic curves. (b) Precision-recall curves

3.3 Experimental results

3.3.1 Ablation studies
To analyze the necessity of two-layer contrast learning for our 
model, we adopted two variants of TDCMDA, TDCMDA-without 
L1 and TDCMDA-without L2, as comparison methods. 
Specifically, TDCMDA-without L1 means that we remove the first 
layer of contrast learning; that is, we do not integrate the 
similarities of the disease-gene heterogeneous network and 
only use the output of the NTH layer GCN as features. TDCMDA-
without L2 removes the second layer of contrast learning and 
lacks the fusion loss of the tripartite graph.

The outcomes of the entire TDCMDA model were contrasted 
with those of the previous two models, and the experimental 
results are presented in Figure 4 . The ACU value of TDCMDA 
was improved by about 2% when compared with the model with 
only the first layer contrast learning and the model with only the 
second layer contrast learning, indicating the importance of 
contrast learning for our model so that the model can produce 
a more effective screening of features, and achieve good 
prediction performance.

(a) (b)

Figure 4. Comparison of ROC curves with different TDCMDA 
components. (a) TDCMDA without the first contrast learning. (b) 
TDCMDA without the second contrast learning

3.3.2 Comparing TDCMDA with baseline 
methods
We compared our model TDCMDA to other cutting-edge 
prediction techniques to show how effective it is at predicting 
miRNA-disease connections, including MRRN [36], SMAP [37], 
IMCMDA [38], MAGCN [39], HGANMDA [40], M2GMDA [41], 
DBMDA [13], SAEMDA [42]. As shown in Figure 5 , TDCMDA has 
the best prediction performance. The AUC of the ROC curve is 
0.9495. TDCMDA outperforms MRRN, SMAP, IMCMDA, MAGCN, 
HGANMDA, M2GMDA, DBMDA, and SAEMDA by 1.97%, 2.33%, 
8.10%, 6.94%,1.04%,1.77%,5.51%, and 3.22%, respectively.

(a) (b)

Figure 5. results of TDCMDA and other methods on the dataset. 
(a) Receiver operating characteristic curves. (b) Precision-recall 
curves

 MRRN and IMCMDA are both matrix-based methods; MRRN has 
better performance due to the fact that the MRRN model 
combines matrix reconstruction and node reliability, while 
IMCMDA only designs an inductive matrix complementation 
model. HGANMDA and MAGCN both utilize attention 
mechanisms, and both achieve better results; HGANMDA is 
based on hierarchical graph attention networks, and MAGCN is 
based on multi-channel attention networks. The M2GMDA 
model is built on a novel multivariate pathway fusion graph 
embedding that predicts undiscovered miRNA-disease 
connections. SAEMDA model is a computational model of 
stacked autoencoders. The above approaches focus on 
similarity, matrix methods, and attention mechanisms. They 
neglect the potential role of the base. Extraction of disease-
based disease representation of node pairs and graph 
convolution learning of its network representation are two 
benefits of TDCMDA over alternative techniques. We can also 
see that TDCMDA obtains better prediction of miRNA-disease 
association compared to other baseline methods. The outcomes 
demonstrate that our model performs well.

3.4 Case studies
A case study on the full dataset was carried out to show the 
effectiveness of TDCMDA in predicting probable miRNA-disease 
associations. Prediction of miRNA-disease pairs with unknown 
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associations using TDCMDA and ranking of miRNA from highest 
to lowest based on prediction scores. Our research focused on 
case studies of lung, breast, and esophageal cancers. For each 
condition, we listed the top 50 miRNAs predicted by TDCMDA. 
For each disease, we selected the miRNA with the highest 
prediction score and searched for experimental evidence in the 
HMDD v3.2 database, a hand-collected database of miRNA-
disease associations, containing a total of 1206 miRNA, 893 
diseases, and 35547 miRNA-disease association data.

Lung neoplasms are the main malignant tumors of the 
respiratory system [43]. In Table 1 of the predicted results of 
TDCMDA, we can observe that the HMDD v3.2 database has 
verified 46 of the top 50 miRNAs anticipated to be linked to lung 
neoplasms. For instance, Espinosa and Slack have shown that 
the transcripts of the second and third-ranked hsa-let-7e, hsa-
let-7d, are dramatically downregulated in human lung cancer 
and that low levels of hsa-let-7 are linked to poor prognosis [44]. 
The 11th-ranked miRNA, hsa-mir-134, has been shown by Chen 
et al. to regulate the growth and apoptosis of lung cancer H69 
cells via ERK1/2 signaling pathway inhibition and WWOX gene 
targeting [45].

Table 1. Validation results of predicted associations for lung neoplasms as an unknown 
disease

Disease Name Rank miRNA Evidence Rank miRNA Evidence

Lung neoplasms

1 hsa-mir-21 HMDD v3.2 26 hsa-mir-155 HMDD v3.2
2 hsa-let-7e HMDD v3.2 27 hsa-mir-210 HMDD v3.2
3 hsa-let-7d HMDD v3.2 28 hsa-let-7f-1 unconfirmed
4 hsa-let-7a-1 HMDD v3.2 29 hsa-mir-30d HMDD v3.2
5 hsa-let-7a-2 HMDD v3.2 30 hsa-let-7g HMDD v3.2
6 hsa-mir-18a HMDD v3.2 31 hsa-mir-203a unconfirmed
7 hsa-mir-200b HMDD v3.2 32 hsa-mir-33a HMDD v3.2
8 hsa-mir-200c HMDD v3.2 33 hsa-mir-9 HMDD v3.2
9 hsa-let-7b HMDD v3.2 34 hsa-mir-10b HMDD v3.2

10 hsa-let-7a HMDD v3.2 35 hsa-mir-34a HMDD v3.2
11 hsa-mir-134 HMDD v3.2 36 hsa-mir-29b HMDD v3.2
12 hsa-mir-183 HMDD v3.2 37 hsa-mir-143 HMDD v3.2
13 hsa-let-7i HMDD v3.2 38 hsa-mir-486 HMDD v3.2
14 hsa-mir-217 HMDD v3.2 39 hsa-mir-19b HMDD v3.2
15 hsa-mir-193a HMDD v3.2 40 hsa-mir-128-2 HMDD v3.2
16 hsa-mir-29a HMDD v3.2 41 hsa-mir-20a unconfirmed
17 hsa-mir-145 HMDD v3.2 42 hsa-mir-182 HMDD v3.2
18 hsa-mir-34b HMDD v3.2 43 hsa-mir-132 HMDD v3.2
19 hsa-mir-30a HMDD v3.2 44 hsa-mir-19a HMDD v3.2
20 hsa-mir-17 HMDD v3.2 45 hsa-mir-27a HMDD v3.2
21 hsa-mir-34c unconfirmed 46 hsa-let-7a-3 HMDD v3.2
22 hsa-mir-31 HMDD v3.2 47 hsa-mir-1-1 HMDD v3.2
23 hsa-let-7c HMDD v3.2 48 hsa-mir-494 HMDD v3.2
24 hsa-mir-203 HMDD v3.2 49 hsa-let-7f-2 HMDD v3.2
25 hsa-mir-124-1 HMDD v3.2 50 hsa-mir-125b-1 HMDD v3.2

 Breast neoplasms are the most prevalent cancer among women 
in the world and the second most common malignancy in China. 
[43]. In Table 2 of the predicted results of TDCMDA, we can 
observe that the HMDD v3.2 database has verified 48 of the top 
50 miRNAs anticipated to be linked to breast neoplasms. The 
36th-ranked hsa-mir-10b, a common breast cancer oncogenic 
factor, was one of the first miRNAs found to affect cancer 
metastasis and could promote cellular value addition and 
migration in breast cancer through the FUT8/p-AKT axis [46]. 
The 47th-ranked hsa-mir-206 was the first miRNA associated 
with breast carcinogenesis when Lorio et al. compared the 
distinction between typical and abnormal miRNA expression 
and breast neoplasms tissues. In research by Ge et al. [47], it 
was discovered that Hsa-mir-206 directly inhibited the PFKFB3 
molecule, having an impact on the glycolytic process as well as 
cellular value addition and migration in breast cancer cells.

Table 2. Validation results of predicted associations for breast neoplasms as an unknown 
disease

Disease Name Rank miRNA Evidence Rank miRNA Evidence

Breast neoplasms

1 hsa-mir-200b HMDD v3.2 26 hsa-let-7a-1 HMDD v3.2

2 hsa-mir-222 HMDD v3.2 27 hsa-mir-18a HMDD v3.2
3 hsa-let-7a HMDD v3.2 28 hsa-mir-214 HMDD v3.2
4 hsa-mir-452 HMDD v3.2 29 hsa-mir-19b HMDD v3.2
5 hsa-mir-21 HMDD v3.2 30 hsa-mir-10a HMDD v3.2
6 hsa-mir-342 HMDD v3.2 31 hsa-mir-145 HMDD v3.2
7 hsa-mir-200c HMDD v3.2 32 hsa-mir-29c unconfirmed
8 hsa-mir-205 unconfirmed 33 hsa-mir-96 HMDD v3.2
9 hsa-mir-125b-1 HMDD v3.2 34 hsa-mir-574 HMDD v3.2

10 hsa-mir-199b HMDD v3.2 35 hsa-mir-29a HMDD v3.2
11 hsa-mir-93 HMDD v3.2 36 hsa-mir-10b HMDD v3.2
12 hsa-mir-30a HMDD v3.2 37 hsa-let-7e HMDD v3.2
13 hsa-mir-27b HMDD v3.2 38 hsa-mir-17 HMDD v3.2
14 hsa-mir-335 HMDD v3.2 39 hsa-mir-153 HMDD v3.2
15 hsa-mir-9 HMDD v3.2 40 hsa-mir-302b HMDD v3.2
16 hsa-mir-15a HMDD v3.2 41 hsa-mir-143 HMDD v3.2
17 hsa-mir-16 HMDD v3.2 42 hsa-mir-125b HMDD v3.2
18 hsa-mir-27a HMDD v3.2 43 hsa-mir-133b HMDD v3.2
19 hsa-mir-141 HMDD v3.2 44 hsa-mir-31 HMDD v3.2
20 hsa-mir-182 HMDD v3.2 45 hsa-mir-106a HMDD v3.2
21 hsa-mir-200a HMDD v3.2 46 hsa-mir-423 HMDD v3.2
22 hsa-mir-155 HMDD v3.2 47 hsa-mir-206 HMDD v3.2
23 hsa-mir-200 HMDD v3.2 48 hsa-mir-29b-2 HMDD v3.2
24 hsa-mir-106b HMDD v3.2 49 hsa-let-7a-2 HMDD v3.2
25 hsa-mir-196a HMDD v3.2 50 hsa-mir-19a HMDD v3.2

 Esophageal neoplasms are the major malignant tumors of the 
digestive system [43]. In Table 3 of the predicted results of 
TDCMDA, we can see that HMDD v3.2 has verified all 50 of the 
miRNAs that were anticipated to be linked with esophageal 
neoplasms. The second-ranked miRNA, hsa-mir-125b, inhibits 
the growth of esophageal squamous cell carcinoma through the 
p38-MAPK signaling pathway [48]. The plasma of esophageal 
cancer patients had a considerable upregulation of the third-
ranked miRNA, hsa-mir-21, which considerably aided recipient 
cells' invasion and migration [49].

Table 3. Validation results of predicted associations for esophageal neoplasms as an 
unknown disease

Disease Name Rank miRNA Evidence Rank miRNA Evidence

Esophageal 
neoplasms

1 hsa-mir-27a HMDD v3.2 26 hsa-mir-155 HMDD v3.2
2 hsa-mir-125b HMDD v3.2 27 hsa-mir-10b HMDD v3.2
3 hsa-mir-21 HMDD v3.2 28 hsa-mir-20a HMDD v3.2

4 hsa-mir-486 HMDD v3.2 29 hsa-mir-196a-
2 HMDD v3.2

5 hsa-mir-451 HMDD v3.2 30 hsa-mir-150 HMDD v3.2
6 hsa-mir-143 HMDD v3.2 31 hsa-mir-146a HMDD v3.2

7 hsa-mir-342 HMDD v3.2 32 hsa-mir-133a-
1 HMDD v3.2

8 hsa-mir-25 HMDD v3.2 33 hsa-mir-183 HMDD v3.2
9 hsa-mir-203 HMDD v3.2 34 hsa-mir-151 HMDD v3.2

10 hsa-mir-145 HMDD v3.2 35 hsa-mir-302f HMDD v3.2

11 hsa-mir-19a HMDD v3.2 36 hsa-mir-196a-
1 HMDD v3.2

12 hsa-mir-100 HMDD v3.2 37 hsa-mir-130a HMDD v3.2
13 hsa-mir-92a-1 HMDD v3.2 38 hsa-mir-373 HMDD v3.2
14 hsa-mir-31 HMDD v3.2 39 hsa-mir-194 HMDD v3.2

15 hsa-mir-199a-
1 HMDD v3.2 40 hsa-mir-26a-1 HMDD v3.2

16 hsa-mir-15a HMDD v3.2 41 hsa-mir-99b HMDD v3.2
17 hsa-let-7a-3 HMDD v3.2 42 hsa-mir-92b HMDD v3.2
18 hsa-mir-93 HMDD v3.2 43 hsa-mir-196b HMDD v3.2
19 hsa-mir-205 HMDD v3.2 44 hsa-mir-499a HMDD v3.2
20 hsa-mir-135b HMDD v3.2 45 hsa-mir-193a HMDD v3.2
21 hsa-mir-99a HMDD v3.2 46 hsa-mir-22 HMDD v3.2
22 hsa-mir-210 HMDD v3.2 47 hsa-mir-130b HMDD v3.2
23 hsa-let-7a HMDD v3.2 48 hsa-mir-151a HMDD v3.2
24 hsa-mir-126 HMDD v3.2 49 hsa-mir-720 HMDD v3.2
25 hsa-mir-29c HMDD v3.2 50 hsa-mir-454 HMDD v3.2

4. Conclusion
The ability to anticipate the miRNA-disease associations is 
crucial for the research of disease genesis and the continuous 
progress of new medications. In this essay, we suggest a 
tripartite graph-based integrating dual-layer Contrast learning 
into graph neural network for MDA prediction, which aims to 



https://www.scipedia.com/public/Bai_et_al_2023a 8

J. Bai, P. Zhang and L. Li, TDCMDA: Tripartite graph-based integrating dual-layer contrast learning into graph 
convolutional network for miRNA-disease association identification, Rev. int. métodos numér. cálc. diseño ing. (2023). 
Vol. 39, (3), 28

integrate dual-layer contrast learning into graph neural 
network under the miRNA-disease-gene tripartite graph. GCN 
and contrastive learning methods were fused to join the 
disease-gene graph network to determine the relationship 
between miRNA-disease. The disease-disease similarity was first 
obtained using the relationship aggregation mechanism and 
the cosine similarity method. The spatial structural properties of 
the miRNA-disease heterogeneous network were then extracted 
using the GCN approach. Then, two layers of supervised 
contrast learning are added to improve the nodes' effective 
representation. Five-fold crossover experiments confirmed that 
our proposed method, TDCMDA, achieved excellent results in 
both AUC and AUPR and outperformed current state-of-the-art 
methods. The ability of TDCMDA to predict potential miRNA-
disease associations was further confirmed by case studies of 
lung neoplasms, breast neoplasms, and esophageal neoplasms, 
and TDCMDA can be used as a useful tool for screening reliable 
miRNA-disease pairs.

However, our model also has some limitations, which need to 
be further explored in the following studies. For example, our 
model is highly dependent on the disease-gene relationship 
network, suffers from the problem of cold start, and cannot 
provide accurate predictions for new diseases. However, high-
quality miRNA illness heterogeneous networks are critical for 
the quality of features derived by graph convolution; as a result, 
it's crucial to understand how to build high-quality 
heterogeneous networks. Future research projects need to 
answer these questions.
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