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Abstract
Breast cancer is one of the leading causes of death in women worldwide and early detection 
is critical to improving survival rates. In this study, we present a modified deep learning 
method for automatic feature detection for breast mass classification on mammograms. We 
propose to use EfficientNet, a Convolutional Neural Network (CNN) architecture that 
requires minimal parameters. The main advantage of EfficientNet is the small number of 
parameters, which allows efficient and accurate classification of mammogram images. Our 
experiments show that EfficientNet, with an overall accuracy of 86.5 percent, has the 
potential to be the basis for a fully automated and effective breast cancer detection system 
in the future. Our results demonstrate the potential of EfficientNet to improve the accuracy 
and efficiency of breast cancer detection compared to other approaches.
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1. Introduction
Breast cancer is a significant contributor to the global mortality 
rate among women. Detecting cancer in its early stages is 
critical to reduce mortality. Breast cancer can often be 
diagnosed better than other cancers using medical imaging. 
These include mammography, ultrasound, magnetic resonance 
imaging (MRI), computed tomography (CT), and high-resolution 
mammography [1]. For medical purposes, imaging procedures 
are performed by radiologists, sonologists, and pathologists. 
Imaging techniques can be used to classify a breast tumor as 
either malignant or benign [2]. There is no evidence that the 
benign lesion is premalignant. Rather, they are abnormalities of 
epithelial cells, the vast majority of which are incapable of 
developing into breast cancer. Cancerous and malignant cells 
grow and divide abnormally. Due to the different appearance of 
benign and malignant cells, manual interpretation of 
microscopic images is a challenging and time-consuming task 
[3].

An important theoretical issue that has dominated the field for 
many years concerns physicians' diagnoses, which can 
occasionally be ambiguous and incorrect. This involves 
malignant symptoms that may be classified as cancerous or 
noncancerous based on mammography images. It is sometimes 
difficult for a radiologist to make an accurate diagnosis based 
on a mammogram [4]. Advanced disease stage and higher 
mortality rate may result from delays in treatment and 
diagnosis. Recent trends in artificial intelligence(AI) have 

supported the automatic detection of a variety of diseases on 
medical images in radiology, pathology, and even 
gastroenterology [5-7]. A considerable amount of literature has 
been published on the detection of breast cancer using AI, with 
sensitivity ranging from 86.1 to 93% and specificity ranging 
from 79% to 90% [8-11]. This shows that AI is the key factor for 
high accuracy and sensitivity of an experiment.

This article tries to show that breast cancer is one of the most 
deadly cancers and proposes a new method to detect breast 
cancer. Previous studies show that early detection of cancer 
leads to a better prognosis and a higher survival rate. Among 
patients with breast cancer in North America, the 5-year relative 
death rate due to early detection is over 80% [12]. Over a 14-
year follow-up period, mammography screening was found to 
reduce breast cancer mortality by 20% to 35% in women aged 
50 to 69 years and by a smaller amount in women aged 40 to 49 
years [13]. This is consistent with what we are trying to achieve 
with our research objectives.

Mammogram is the most promising imaging screening 
technology in clinical practice due to their advantages, such as 
low cost and ability to detect cancers at the earliest stage. Thus, 
the goal of this study is to improve both the accuracy of patient 
diagnoses and patient survival rates by using a CNN-based 
architecture using mammogram. Recent trends in CNN-based 
architectures have led to important discoveries in medical 
imaging. This work will provide new insights into CNN-based 
architectures, particularly EfficientNet's ability to improve image 
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classification and detection performance. It is hoped that this 
research will have an impact on medical image analysis by 
improving recognition accuracy in the context of critical 
outcomes. The pipeline of the proposed architecture starts with 
data enrichment, then optimizes the pre-trained EfficientNet 
models and fine-tunes them while providing snapshots of the 
model. The EfficientNet models have been shown to be more 
accurate than the most advanced CNN designs currently in use, 
while being simpler and faster. This article makes an important 
contribution in the following ways:

To assess whether a cancer tumor cell is benign or malignant, 
we present a novel CNN-based architecture that uses a pre-
trained EfficientNet model for feature extraction.

We perform a comparative evaluation of the accuracy of each 
deep learning architecture in the context of EfficientNet transfer 
learning.

The rest of this paper is organized as follows: The second 
section reviews the relevant literature on these topics, while the 
third section examines the materials and methods of the study. 
The results of the study are discussed in Section 4, while future 
work and conclusions are highlighted in Section 5.

2. Related works
Convolutional Neural Network (CNN) approaches are commonly 
used as a method to distinguish benign from malignant images 
by identifying intricate and subtle elements of mammographic 
imaging. This forms the basis for the creation of a computerized 
clinical tool to reduce false recalls. There are a number of 
researches that use CNN as a method for their studies [14-16]. 
Some of the researchers like [14,16] combine CNN features with 
their own selected models. This has been shown to increase the 
accuracy of the model, which is consistent with our goals.

To support this statement, Zhang et al. [14] combine the Graph 
Convolutional Network (GCN) with the CNN. Using these two 
advanced neural networks, the author was able to achieve an 
accuracy of 96.10 ± 1.60%. Contributing to this accuracy are their 
8-layer CNN and 14-fold data expansion approach. Accordingly, 
Maqsood et al. [16] added CNN features to improve the 
accuracy. The authors introduce a new method called 
transferable texture convolutional neural network (TTCNN) to 
improve the accuracy of disease detection. TTCNN consists of 
only three convolutional layers and one energy layer. The 
performance is evaluated based on the deep properties of 
convolutional neural network models such as InceptionResNet-
V2 and VGG-16. Sparse image decomposition convolution 
method is used to fuse all retrieved feature vectors, and then 
entropy-driven firefly method is used to select the best features.

While Zhang et al. [14] and Maqsood et al. [16] focus on 
combining CNN features with other models, there are also 
researchers who include a CNN feature alone in their research, 
such as in Albalawi et al. [15] and Tsochatzidis et al. [17]. 
Albalawi et al. [15] use a CNN classifier to classify the obtained 
features. The model used K-means to analyze mammograms for 
mass using texture information. The research proposed to use 
ResNet to improve breast cancer mammograms. Also, Salama 
and Aly [18] used ResNet50 in their research by using MIAS and 
the DDSM database and combining ResNet50 with a modified 
segmentation of UNet. In this research, the authors achieved 
95.63% accuracy.

In summary, all the results reviewed here support the 
hypothesis that CNN and deep learning methods have 
improved the accuracy of a model. Table 1 shows that some 
works combine their model with existing CNN models, e.g., in 
Zhang et al. [14] and Maqsood et al. [16]. In Albalawi et al. [15], 

Salama and Aly [18] and Tsochatzidis et al. [19], these 
researchers focus on developing their own CNN models. All the 
presented works are able to achieve high accuracy. In contrast, 
this work presents a novel method for breast cancer mass 
detection in mammography that differs from all other 
mentioned methods. We provide new insights about the pre-
trained EfficientNet, a proven method for diagnosing breast 
cancer using huge amounts of medical image data. EfficientNet 
is a state-of-the-art deep learning architecture that has been 
shown to achieve outstanding results in many image 
classification tasks while using fewer parameters than previous 
models.

Table 1. A Review of CNN-based Architectures with mass mammography

Method Data Source Architecture Pre-trained Weight
Tsochatzidis et al. 
[17]

DDSM-400, CBIS-
DDSM ResNet ImageNet

Zhang et al. [14] MIAS BDR-CNN-GCN No
Albalawi et al. 
[15] MIAS CNN No

Maqsood et. al. 
[16]

DDSM, InBreast, 
MIAS TTCNN ImageNet

Salama and Aly 
[18]

DDSM, CBIS-DDSM, 
MIAS

InceptionV3, DenseNet121, 
ResNet50,

 VGG16, MobileNetV2
Image-Net

3. Materials and methods

3.1 Data sets
The dataset used in this paper is cited in Huang and Lin [20]. It is 
InBreast, which consists of eight categories for our classification 
task. It contains four categories for breast density with benign 
or malignant in the breast. In addition, the dataset contains 
images acquired before and after data augmentation, with a 
270 × 270 image matrix. From the 410 mammograms in the 
InBreast collection, 106 images representing a breast mass 
were selected for this study. The data expansion increased the 
number of mammogram images in this study to 7,632. 
Mammogram images with masses assigned to four different 
density groups and their benign or malignant status are shown 
in Figure 1:

1. Breast density is classified as 1 and breast mass as 
benign (Density 1+ Benign).

2. Breast density is classified as 1 and breast mass as 
malignant (Density 1+ Malignant).

3. Breast density is classified as 2 and breast mass as 
benign (Density 2+ Benign).

4. Breast density is classified as 2 and breast mass as 
malignant (Density 2+ Malignant).

5. Breast density is classified as 3 and breast mass as 
benign (Density3+ Benign).

6. Breast density is classified as 3 and breast mass as 
malignant (Density 3+ Malignant).

7. Breast density is classified as 4 and breast mass as 
benign (Density 4+ Benign).

8. Breast density is classified as 4 and breast mass as 
malignant (Density 4+ Malignant).
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Figure 1. Samples of images that have been used before augmentation with labels: 
(A) – (D) Benign; (E) – (H) Malignant

 The 106 original images were pre-processed with contrast-
limited adaptive histogram equalization (CLAHE) to balance and 
enhance the image characteristics. Figure 1 shows 
mammogram images with masses classified into four groups 
based on CLAHE processing, which was described in detail in 
the previous section. Figure 2 shows that the image after CLAHE 
processing has a clearer localization of the mass than the 
original image in Figure 1. There are a total of 106 original 
images and 106 additional images after CLAHE processing, for a 
total of 106 × 2 = 212 images.

Figure 2. Examples of images that have been used after augmentation with labels : 
(A) – (D) Benign; (E) – (H) Malignant

3.2 Data augmentation

During the training phase, the data is constantly expanded to 
increase the size of the training set. The transformation can be 
used to enrich the data if the semantic information of the image 
is preserved. By solving the problem of overfitting through data 
enrichment, the performance of the model can be improved. 
Despite the fact that the CNN model has properties such as 
partial translation invariance, augmentation processes (i.e., 
translated images) often lead to a significant improvement in 
generalization ability [21]. Data augmentation options include a 
variety of methods, each with the advantage of interpreting 
images in different ways to highlight important features to 
improve performance. Data enhancement options include a 
variety of methods, each of which has the advantage of 
interpreting photographs in different ways to highlight 
important features and thus improve model performance. 
Transformations such as horizontal flipping, rotating, shearing, 
and zooming were evaluated as part of the augmentation 
evaluation.

According to Huang and Lin [20], the data is augmented by 
rotating it several times (θ = 30, 60, 90, 120, 150, 180,  210, 240,
270, 300, 330°) and flipping the actual image and images 
vertically and horizontally with 11 rotation angles. This 
technique increases the sample size and fixes the overfitting 
problem.

3.3 Architecture
Figure 3 shows the proposed architecture based on a pre-
trained EfficientNet model. We extracted features from the 
InBreast dataset using the pre-trained EfficentNet model [22]. 
This step ensures that the pre-trained EfficientNet model is able 
to extract and learn useful mammogram features and 
generalize accurately.

EfficientNets are a collection of models derived from a single 
base model. For simplicity, our recommended architecture 
shows the use of EfficientNet-B3. Two fully interconnected 
layers integrating stack normalization, activation, and dropout 
provide the output features of the pre-trained model to the 
proposed adapted upper layers.

Figure 3. Graphical representation of the proposed architecture

 In Figure 3, each assessed EfficientNet implemented two layers 
of transfer learning. It was found that maintaining the dropout 
value of 0.3 contributed to higher precision and validation.

3.4 EfficientNet extraction of pre-trained 
features
EfficientNet is a collection of models (EfficientNet-B0 through 
EfficientNet-B7) created by extending the base network 
(commonly referred to as EfficientNet-B0). EfficientNet has 
gained popularity due to its improved predictive performance. 
This is achieved by applying a compound scaling method to all 
network parameters, including width, resolution, and depth. 
The compound scaling method is based on the idea that 
increasing any network dimension (including width, depth, or 
image resolution) improves accuracy, but the gain decreases as 
the size of the model increases. The dimensions are scaled as 
follows:

depth :d = ∝∅ (1)

width :w = β∅ (2)

resolution :r = γ∅ (3)

https://www.scipedia.com/public/File:Draft_Hussain_989919632-image1.png
https://www.scipedia.com/public/File:Draft_Hussain_989919632-image1.png
https://www.scipedia.com/public/File:Draft_Hussain_989919632-image2.png
https://www.scipedia.com/public/File:Draft_Hussain_989919632-image2.png
https://www.scipedia.com/public/File:Draft_Hussain_989919632-image3.png
https://www.scipedia.com/public/File:Draft_Hussain_989919632-image3.png
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s . t . ∝ . β2 . γ2 ≈ 2 (4)

∝ ≥ 1, β ≥ 1, γ ≥ 1 (5)

where ϕ  is the compound coefficient and ∝ , β  and γ  are the 
dimension-specific scaling coefficients corrected by a grid 
search. The network is scaled to the desired target model size 
after scaling the baseline network (EfficientNet-B3) using the 
scaling coefficients. ∝= 1.2, β = 1.1, and γ = 1.15.

Observation has shown that EfficientNet is much more accurate 
and effective in image recognition with fewer parameters than 
other well-known ConvNets such as ResNet, XCeption, and 
Inception. These issues are further discussed in [22,28]. The 
main goal of this project is to demonstrate that early detection 
of breast cancer with EfficientNet can lead to significant 
improvements and potentially save a patient's life.

Since 2012, it has been shown that the success of EfficientNet 
has increased in direct proportion to the complexity of the 
models used in the ImageNet dataset. However, the vast 
majority of models have been shown to be computationally 
inefficient. The EfficientNet model, which achieved 93 percent 
accuracy in the ImageNet classification test with 4,978,334 
parameters, can be considered a subset of the CNN models. The 
EfficientNet group consists of eight models with complexity 
ranging from B0 to B7. As the number of models increases, the 
number of calculated parameters remains relatively constant, 
but the accuracy improves exponentially. EfficientNet uses its 
own activation function, Swish, as opposed to the Rectifier 
Linear Unit (ReLU) activation function [22].

Table 2 provides comprehensive information on each layer of 
the EfficientNet-B3 baseline network. The feature extraction of 
the EfficientNet-B3 base architecture consists of multiple mobile 
inverted bottleneck convolutional blocks (MBConv) with 
integrated squeeze-and-excitation (SE), batch normalization, 
and swish activation [21,23-25]. EfficientNet-B3 consists of 
sixteen MBConv blocks, which differ in kernel size, feature map 
expansion phase, and reduction ratio, among others. The 
complete technique for the MBConv1, k3 × 3, and MBConv6, k
3 × 3, blocks is shown in Figure 4. Both MBConv1 and MBConv6 
provide for convolution in depth with a kernel size of 3 × 3 and a 
step size of s. These two blocks consist of stack normalization, 
activation, and convolution with a kernel size of 1 × 1. MBConv1, 
k3 × 3, lacks a skip connection and a dropout layer. MBConv6, k
3 × 3 is also six times larger than MBConv1, k3 × 3, and the same 
is true for the reduction rate in block SE, where r is fixed at four 
for MBConv1, k3 × 3 and twenty-four for MBConv6, k3 × 3. 
MBConv6, k5 × 5 and MBConv6, k3 × 3 do not perform the same 
operations, but MBConv6, k5 × 5 uses a kernel size of 5 × 5 and 
MBConv6, k3 × 3 uses a kernel size of 3 × 3.

Table 2. Outline of efficientNet-fundamental B3's network layers

Stage Operator Resolution #Output Feature Maps #Layers
1 Conv 3×3 224×224 32 1
2 MBConv1, k3×3 112×112 16 1
3 MBConv6, k3×3 112×112 24 2
4 MBConv6, k5×5 56×56 40 2
5 MBConv6, k3×3 28×28 80 3
6 MBConv6, k5×5 14×14 112 3
7 MBConv6, k5×5 14×15 192 4
8 MBConv6, k3×3 7×7 320 1
9 Conv 1×1 & Pooling & FC 7×7 1280 1

 As inputs, each MBConv block takes the values for height, width, 
and channel h, w, and c. C denotes the output channel for the 
two MBConv blocks. (MBConv stands for Mobile Inverted 
Bottleneck Convolution, DW Conv symbolizes convolution in 

Figure 4. EfficientNet-fundamental B3's building piece

depth, SE stands for squeeze excitation, and Conv stands for 
convolution) (a) and (c) are both Mobile Inverted Bottleneck 
Convolution blocks, but (c) is six times larger than (a). The 
representation of the squeeze excitation block is (b).

Instead of initializing the weights arbitrarily, we initialize the 
pre-trained weights from ImageNet in the EfficientNet model, 
which dramatically speeds up the training process. Since its 
inception, ImageNet has made significant progress in the field 
of image analysis, collecting approximately 14 million photos 
from a variety of categories. Pre-trained weights are used 
because the imported model already contains sufficient 
information about the more general features of the image 
domain. As a number of studies (e.g., Rajaraman et al. [26], and 
Narin et al. [27]) have shown, there is reason to be optimistic 
about the use of pre-trained ImageNet weights in modern CNN 
models, even when the problem to be addressed is very 
different from the one for which the original weights were 
determined. During the new training phase, the optimization 
technique will fine-tune the initial pre-trained weights so that 
researchers can fit the pre-trained model to a specific problem 
domain. As shown in Figure 3, the proposed architecture's 
approach to feature extraction uses pre-trained ImageNet 
weights.

3.5 Classifier
Figure 4 shows a classifier whose top layer has been updated 
according to the feature mining technique. Global averaging of 
the output features of the pre-trained EfficientNet model. To 
decode the classification task, a two-layer MLP (often referred to 
as "fully connected" (FC)) was incorporated, consisting of two 
neural layers representing the globally averaged attributes of 
the EfficientNet model (each neural layer has 512 nodes). A 
batch normalization, activation, and dropout layer was inserted 
between the FC layers.

Batch normalization significantly speeds up the training of deep 
neural networks and improves their stability [28]. It improves 
the smoothness of the optimization process, which leads to a 
safer and more consistent behavior of the gradient, which 
speeds up the training [22]. Swish was chosen as the activation 
function for this experiment because it is written as follows [25]:

f (x ) = x ⋅ σ (x ) (6)

https://www.scipedia.com/public/File:Draft_Hussain_989919632-image4.jpg
https://www.scipedia.com/public/File:Draft_Hussain_989919632-image4.jpg
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where the sigmoid function has the following definition: σ (x ) =
(1 + exp( − x ) )−1. Swish routinely outperforms other activation 

functions, including the best known and most successful, 
Rectified Linear Unit (ReLU), in a variety of difficult domains such 
as image classification and machine translation [29].

After activation, a dropout layer was introduced, which is one of 
the most successful regularization approaches to prevent 
overfitting and generate more accurate predictions [30]. This 
layer provides the ability to randomly delete FC layer nodes. In 
this process, all randomly selected nodes and their incoming 
and outgoing weights are removed. The number of randomly 
selected nodes dropped in each layer is determined 
independently of the previous layers with a probability p, which 
can be drawn from a validation set or a random estimate (p =
0.5). We maintained an attrition rate of 0.2% throughout the 
study. The categorical cross-entropy loss function is used to 
quantify the difference between the actual and predicted 
probabilities of a category during the training phase. The 
phrase "categorical cross-entropy" means:

ı = − ∑
n =1

N

log log ( e
Yi ,n

∑
j =1

C

e
Yj ,n

)

(7)

where N  is the total number of input samples and C  is the total 
number of classes, which in our case is two.

4. Result and discussions
In this part, we compare the classification performance of the 
proposed model with current best practices. Our software stack 
consists of Keras and TensorFlow. All our applications are 
developed in Python.

4.1 Configuration of the dataset and parameters

This section examines the distribution of the data set and the 
model parameters obtained from the experiment. InBreast, one 
of the best known freely available mammography datasets for 
breast cancer, was used. Since the material contains both 
benign and malignant breast tumors, our categorization work 
consists of eight categories. In addition, the dataset contains 
images acquired both before and after data enhancement, with 
an image matrix of 224 × 224. The distribution of images for 
training, validation and testing is summarized in Table 3.

Table 3. Training and testing image distribution

Category Training Testing
Benign 5, 970 2, 394

Malignant 7, 158 4, 844

 Our base model for this experiment is EfficientNet B3. The 
resolution of the input image varies depending on the individual 
base model. Higher image resolution requires the addition of 
more layers to capture finer patterns, increasing the number of 
parameters in the model. Table 4 shows the input image 
resolution and the total number of training parameters 
generated for our base model, EfficientNet B3.

Table 4. Each base model input image resolution size

Base model Image resolution Total parameter size Trainable Non-trainable
EfficientNet B3 300x300 11,844,394 11,751,978 11,751,978

4.2 Evaluation metrics
Precision, recall, F1-score, confidence interval (CI), and area 
under the curve were used to evaluate the effectiveness of the 

proposed method (AUC). Precision, recall, and the F1 score are 
specified precisely:

Accuracy = TP + TN
Total Samples

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1 = 2 × Precision × Recall 
Precision + Recall 

(11)

 True-positive scores are represented by the symbol TP , whereas 
false-negative, true-negative, and false-positive scores are 
represented by the symbols TN , FN , and FP , respectively. The 
F1 score can be a more helpful evaluation statistic due to the 
diversity of the benchmark dataset. The normal dataset consists 
of 70 photos, while the malignant dataset consists of 142 
photos. In addition, a 95% confidence interval is considered a 
more meaningful assessment than specific performance 
measures. It has the potential to improve statistical power while 
capturing the reliability of the problem area. Finally, we 
represented the data by plotting the receiver operating 
characteristic curve and calculated the area under the receiver 
operating characteristic curve to measure the accuracy of the 
model (often abbreviated as AUC). The true positive rate 
(TPR)/call and false positive rate (FPR) are displayed on the ROC 
curve, where FPR is defined as follows:

FPR = FP
FP + TN

(12)

4.3 Prediction performance

The training accuracy curve in Figure 5 indicates how well the 
model learns from the training data over time as the 
parameters of the model are changed during the training 
phase. Typically, training accuracy is expected to increase as the 
model learns more from the data, but it can also plateau as the 
model begins to overperform on the training data. The 
validation accuracy curve indicates how well the model 
generalizes to unseen data during training. It is important to 
check the validation accuracy to detect overfitting. This occurs 
when a model performs well on training data but poorly on new 
data. If the validation accuracy begins to decrease while the 
training accuracy continues to increase, this indicates that the 
model is beginning to overfit. The training and validation loss 
curves are similar to the accuracy curves, but they show the 
value of the loss function, which is the objective function that 
the model tries to reduce during training. The loss function 
evaluates the difference between the expected and actual 
values and indicates the model's ability to fit the data. A graph 
that plots the loss and accuracy curves for training and 
validation is a valuable tool for monitoring the performance of a 
machine learning model during training. It can help detect 
overfitting, identify the optimal model architecture, and 
optimize training hyperparameters.
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(a) (b)

Figure 5. EfficientNet B3 accuracy and loss curve

 Accuracy was determined using a 95% confidence interval (CI). A 
small confidence interval indicates higher accuracy, while a 
large confidence interval indicates the opposite. As you can see, 
the confidence interval is narrow when augmentation is not 
present and large when it is. The confusion matrix for Efficient 
Net Pre-trained Weights is also shown in Figure 5. We believe 
that our proposed architecture is compelling for detecting 
benign cancer cells in mammography nodules. This may be 
because its features perform better in detecting benign cancer 
cells than malignant cells.

We implemented the model without making any changes. As 
can be seen in Table 5, EfficientNet-B3 has a recognition and F1 
score of 87 percent.

Table 5. Prediction performance using proposed method

Pre-trained Weight Precision (%) Recall (%) F1-Score (%) Accuracy (%)
EfficientNet-B3 77.4 85.3 81.2 86.5

 In this study, we evaluated the effectiveness of our proposed 
classification model using a confusion matrix in Figure 6 with 
the following values: 110 true positives, 32 false positives, 19 
false negatives, and 220 true negatives. The model achieved 
86.5 percent accuracy, 77.4 percent precision, 85.3 percent 
recognition, and 81.2 percent F1. Despite occasional 
misclassifications, the model showed excellent overall 
performance with high accuracy, balanced recognition, and 
precision. These results indicate that the proposed model could 
be a useful categorization tool for a variety of domains. Further 
studies can be conducted to investigate the generalizability of 
the model to different datasets and domains.

5. Conclusions
In this paper, an improved convolutional network architecture 
for breast cancer nodule detection in mammography is 
presented. The goal of this work is to show that EfficientNet is 
one of the best models for image recognition in terms of the 
minimum parameters used, although other researchers claim 
that another technique is more accurate. Experiments were 
performed to evaluate the performance of convolutional neural 
networks using EfficientNet on InBreast datasets with benign 
and malignant tumor cells, and it was shown that EfficientNet 
significantly improves accuracy compared to other approaches. 
It is believed that integrating EfficientNet into breast cancer 
screening will help save lives and increase survival rates. 
Although our proposed model is 86.5 percent less accurate than 
others, it can be confidently said that EfficientNet is a serious 
competitor to other methods. This shows that EfficientNet can 
be improved over time and will continue to be a competitive 
solution for other systems.

It is worth noting that according to current CNN application 
research, performance increases as the number of available and 

Figure 6. Confusion matrix of efficientNet B3

trained samples increases. In addition, it is important to focus 
on the early stages where these methods may perform poorly, 
and a comprehensive analysis of these methods, taking into 
account the patient's disease progression, is critical. While 
EfficientNet is used as a baseline model by only a few authors, 
the purpose of this study is to highlight EfficientNet as a 
baseline model that should be considered in the future.
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