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Abstract
The energy optimal motion planning of a hopping robot with three links is investigated in 
the flight phase. Firstly, the conservation equation of angular momentum of the hopping 
robot in the flight phase is established which is a nonholonomic constraint. Then the energy 
consumption of the robot in the flight phase is selected as the optimization goal. Given the 
initial and terminal positions, the Gaussian pseudospectrum method is used to solve the 
optimal control problem. The simulation results show that the initial angular momentum 
has a great influence on the performance of the hopping robot. With thezero initial angular 
momentum, although the flight time can be selected arbitrarily, the greater the flight time, 
the smaller the energy consumption, the force required by the robot is greater. Thus, it is 
necessary to select an appropriate value.
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1. Introduction
Compared with wheeled or tracked robots, hopping robots 
move in a jumping manner and are capable of crossing 
obstacles which are several times their own size. They use 
discrete landing points to make contact with the ground and 
have strong adaptability to complex and unstructured terrain. 
The study of hopping robots has become a research focus in 
recent years [1]. Among them, Professor Raibert’s team has 
made groundbreaking research in the field of hopping robots, 
and their designed model of a single legged telescopic hopping 
robot provides a reference for subsequent research [2-6].

Before controlling the robot, it is necessary to plan the motion 
trajectory of the hopping robot [7-11]. Vermeulen [7] planned 
the robot based on its target motion parameters and used a 
quintic polynomial to describe the robot’s trajectory. Wu et al. 
[9]studied hopping robots with flat feet, using Bezier curves to 
represent the trajectory of active joints, and planning the 
trajectory based on minimizing driving energy.

In the flight phase, the robot foot is released from the ground. 
At this time, the only external force on the robot is gravity. The 
robot meets the principle of conservation of angular 
momentum, and is a nonholonomic constraint system. Due to 
the non integrability of nonholonomic constraints, its motion 
planning problem is much more complex than that of general 
systems. Rehman et al. [12] used a time-varying feedback 
control strategy to plan the motion during the flight phase. Guo 
et al. [13] used the direct single shot method to plan the 
jumping gait of a robot with four links, and its flight phase was 
almost passive.

The most commonly used motion planning methods for 
nonholonomic system can be divided into two categories, 
namely, the direct method and the indirect method [14-16]. The 
indirect method is based on the maximum (minimum) value 

principle, which transforms the optimal motion planning 
problem into a two-point boundary value problem. Its 
advantage is that the local optimal solution can be found, but it 
is difficult to guess the initial solution, and the radius of 
convergence is small. The direct method uses the parametric 
method to transform the optimal motion planning problem of 
the continuous system into a nonholonomic motion planning 
problem, and then obtains the optimal motion trajectory by 
solving the non motion planning problem. This method does 
not need to solve the first order optimal condition, and the 
radius of convergence is large. Pseudospectral method is the 
most widely used method among them.

In this paper, the optimal motion planning of a hopping robot 
with three links in the flight phase is studied. First, the 
constraint equation of the hopping robot in the flight phase is 
established according to the conservation principle of angular 
momentum. Then, the energy optimal motion planning 
problem is transformed into a nonholonomic motion planning 
problem by using the Gaussian pseudospectral method, and the 
problem is solved. The simulation results demonstrate the 
effectiveness of this method. Because the initial angular 
momentum has a great impact on the hopping robot. This 
paper finally analyzes the impact of the initial angular 
momentum on the hopping performance of the robot.

2. Dynamic model

The kinematics model of the robot in the flight phase is shown 
in Figure 1. The hopping robot consists of three components: 
body represented by 1, legs denoted by 2, and feet, namely, 3. 
In order to simplify the analysis, it is assumed that the motion of 
the hopping robot is limited to the sagittal plane, without 
considering the lateral motion. Assuming the length of each 
member of the robot is li ( i = 1, 2, 3) , the mass is mi, the 
position of the centroid Si of the body is ASi , and lSi = αi li  (αi  is 
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the proportion factor of each centroid position), and 0 < αi < 1. 
The rotational inertia of each member around the center of 
mass is Ii .

Based on a floating coordinate with hip joint position A as the 
origin, the dynamic model is established. The generalized 
coordinate of the robot is x = [θ0, θ12, θ23 ]T , where θ1 is the 
absolute coordinate of the body, θ12 is the relative angle 
between the body and legs (counterclockwise is positive), 
namely, θ12 = θ1 − θ2, θ23 is the relative angle between the legs 
and feet, i.e. θ23 = θ2 − θ3.

Figure 1. Model of robot during flight phase

 During the flight phase, the influence of air drag and internal 
friction of the robot on the robot’s hopping motion is ignored, 
and the robot’s total center of mass moves in a parabolic 
motion with the gravity. If the flight time is T , then the 
horizontal and vertical motion of the center of mass can be 
written as

{ xc ( t ) = xc
to + ẋ c

to t

yc ( t ) = yc
to + ẏ c

to t − 1
2 gt2

(1)

where, xc
to  and yc

to  are the horizontal and vertical positions of 
the robot’s total center of mass at the flight time, respectively. 
ẋ c

to  and ẏ c
to  are the horizontal and vertical velocities of the total 

center of mass at the flight time, respectively. The position of 
the robot at the touchdown is completely determined by the 
flight conditions.

The rotation of the robot can be expressed by the angular 
momentum of the robot with regarding to the total center of 
mass. Angular momentum can be calculated as follows:

μG = ∑
i =1

3

(GḠ i × mi GḠ∙ i + Ii θ̇ i ) (2)

where, GḠ i = ri − rG , i = 1, . . . , 3, ri  is the position of the 
centroid of each component, and rG  is the position of the total 
centroid.

The only external force on the robot in the flight phase is 
gravity. So the robot meets the principle of conservation of 
angular momentum about the total center of mass. Supposing 
that the angular momentum of the robot at the initial moment 
of the flight phase is P0, one can obtain:

μG = Δ1θ̇ 1 + Δ2θ̇ 12 + Δ3θ̇ 23 = P0 (3)

where Δi  is a function of joint rotation angle. The equation 
above indicates that the system is a nonholonomic system with 
Pfaffian constraints, and it has a cyclic coordinate θ1.

During the flight phase, the robot is only equipped with 
actuators in the hip and ankle joints. So the joint angular 
velocity θ̇ 12 and θ̇ 23 are selected as the control inputs for the 
system. Eq.(3) can be written in state space form. When P0 do 
not equal 0, it is an affine nonlinear system with three states 
and two inputs and drift terms

ẋ = f (x ) + g (x )u = [ − P0/Δ1

0
0 ] + [ − Δ2/Δ1

1
0 ]u1 +  

[ − Δ3/Δ1

0
1 ]u2

(4)

where， u = [u1 u2 ]T = [ θ̇ 12 θ̇ 23 ]T .

When the initial angular momentum of the system is not zero, 
f (x ) ≠ 0, then the system has no balance point.

The optimal trajectory planning of a robot refers to the initial 
position x0 = [θ0, θ12, θ23 ]T and terminal position xT =
[q0d , q1d , q2d ]T  of the given robot, by searching for a set of 
control inputs u ( t )  to enable the robot to move along a path 
that satisfies incomplete constraints. Meanwhile, the robot can 
move from the initial position x0 to the terminal position xT  
within a given time T , and achieve an extreme performance 
index.

In robot systems, due to the limited energy that robots can 
carry, in order to make the robot move for a longer time, it is 
necessary to consider the energy consumption of the robot. 
According to the minimum energy consumption theorem, in 
this paper the energy consumed by the hopping robot during 
flight phase is selected as the optimal control objective. Due to 
the fact that the usual driving method for robots is motor, and 
the energy consumed by the motor is proportional to its 
velocity, the performance index function can be expressed as 
follows:

J = ∫
0

T

u2 ( t )dt (5)

 In the flight phase, the optimal planning problem of a hopping 
robot can be described as: finding suitable control input 
variables to achieve the minimum performance index, i.e. Eq.(5). 
Meanwhile, the state variable and initial time t0 and flight time 
T  satisfy the following constraints:

{x = f (x ) + g (x )u

x (t0) = x0

x (T ) = xT

(6)

where t0 and T are constant.

3. Pseudospectral method for solving optimal 
control problems

In recent years, the pseudospectral method has become one of 
the important methods for solving optimal control problems 
[12]. The basic principle of the pseudospectral method is to 
discretize the continuous optimal control problem at the 
orthogonal collocation points, and approximate the state and 
control variables through the global interpolation polynomial. 
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Thus the optimal control problem can be transformed into a 
nonlinear programming problem (NLP).

According to the different orthogonal collocation points, there 
are four widely used pseudospectral methods: Gaussian 
pseudospectral method, Radau pseudospectral method, 
Legendre pseudospectral method and Chebyshev 
pseudospectral method. Legendre pseudospectral method has 
the advantages of convergence speed of exponential function, 
insensitivity to initial value guess, and large radius of 
convergence. So Legendre pseudospectral method is adopted 
in this paper.

The Legendre pseudospectral method uses the roots of 
orthogonal polynomials as collocation points and global 
orthogonal polynomials as finite bases. The system’s state and 
control variables are discretized at the Lendre Guass Lobatto 
(LGL) point. The Lagrange interpolation polynomial is used to 
approximate the state and control variables, obtaining the 
discrete dynamic equations at the points. Thus, the differential 
operation in the state equation and the integral operation in the 
performance index function are transformed into algebraic 
operation, and finally the optimal control problem is 
transformed into a nonlinear programming problem with the 
state variables and control variables at the points as the 
parameters to be optimized.

Dynamic equation:

ẋ ( t ) = f (x ( t ) , u ( t ) , t ) (7)

Boundary condition:

φ (x ( t0 ) , x ( tf ) , t0, tf ) = 0 (8)

Inequality path constraint

G (x ( t ) , u ( t ) , t ) ≤ 0 (9)

where J ∈ R  is the performance indicator, φ ∈ R  is the Mayer 
type performance indicator, G ∈ R  is the Lagrange type 
performance indicator, and f ( ⋅ )  is the state equation function 
vector, ϕ  is the initial and terminal constraint function vector, 
and C  is the equation and inequality path constraint function 
vector.

The calculation process of Legendre pseudospectral method is 
as follows: first, the value range of the original planning 
problem is mapped from t ∈ [ t0, Tf ]  to the distribution interval 
of discrete points in the pseudospectral method through time 
domain transformation τ ∈ [ − 1, 1] .

The Legendre orthogonal polynomial on the interval [ − 1, 1]  is

Ln (τ ) = 1
2n n !

dn

dxn (τ2 − 1)n (10)

where Ln (τ )  represents n-order Legendre polynomials.

In order to achieve better interpolation approximation, τ0 = − 1, 
τN = 1 and n − 1 zeros τi  (i = 1, 2, …, N − 1) of the first derivative 
of the Legendre polynomial L̇ n (τ )  is defined as an LGL point, 
there are N + 1 control points, denoted as τi  ( i = 1, 2, …, N ) .

Using n + 1 LGL points as interpolation points, n-order 
Lagrangian interpolation polynomials is constructed to 
approximate the continuous state variable x ( t )  and control 
variable u ( t ) , and obtain the following equations:

x (τ ) ≈ X (τ ) = ∑
i =0

N

Φi (τ )Xi
(11)

u (τ ) ≈ U (τ ) = ∑
i =0

N

Φi (τ )Ui
(12)

where, Φi (τ )  is the n -order Lagrangian interpolation basis 
function,

Φi (τ ) = 1
n (n + 1)Ln (τi )

(τ2 − 1) L̇ n (τi )
τ − τi

(13)

where, i = 1, 2, ……, n , Φi (τ )  satisfies the relationship Φi (τ ) =
δij , if i = j , there is δij = 1； if i ≠ j , δij = 0.

After parameterizing the state variable through interpolation 
polynomials, the differential operation of the state equation can 
be approximated as the differential operation of the 
interpolation basis function, and the derivative of the state 
variable x (τ )  can be approximated as follows:

ẋ (τk ) ≈ Ẋ k = ∑
i =0

N

L̇ i (τk )Xi = ∑
i =0

N

Dki Xi
(14)

where k = 0, 1, ⋯⋯, N , D  is the (n + 1) differential matrix, 
representing the differential value of Lagrange basis function at 
each LGL control point, Dki  is the (k , i )th element. One can 
obtain

Dki = { LN (τk )
LN (τj )

⋅ 1
τk − τj

, k ≠ j N (N + 1)
4 , k = j =

0 N (N + 1)
4 , k = j = N0,   other

(15)

 Now, the constraints of the state equation can be transformed 
into discrete state equations at N+1 LGL control points.

∑
i =0

N

Dki Xi −
tf − t0

2 f (Xk , Uk , τk ) = 0 (16)

 The boundary and path constraints after discretization can be 
described as follows:

ϕ (X0, XN , τ0, τN ) = 0 (17)

C (Xk , UN , τk ) ≤ 0 (18)

where k = 0, 1, ⋯, N .

Through Gauss-Lobatto numerical integration, the integral term 
in the performance index function is transformed into the 
following algebraic expression:

J =
tf − t0

2 ∫
−1

1

⟨u (τ ) , u (τ ) ⟩dτ=
tf − t0

2 ∑
i =0

N

wi ⟨Ui , Ui ⟩ (19)

where, wi ( i = 0, 1, ⋯, N )  is Gauss weights, defining
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wi = ∫
−1

1

Φi (τ )dτ = 2
N (N + 1)

1
[LN (τi ) ]2

(20)

 Through the above discretization and approximation 
processing, the optimal control problem can be further 
described by Eqs.(7)-(9) as follows: solving the values of the state 
variable Xi  at N + 1 interpolation points X = (X0, X1, ⋯, XN ) and 
the control variable Ui  at N + 1 interpolation points U = (U0, U1,
⋯, UN ), so that the performance index function takes the 
minimum value and satisfies the constraint conditions of Eqs. 
(16)-(18).

For the energy optimal path planning problem of the hopping 
robot in this paper, given the initial position X ( t0 )  and terminal 
position X (Tf )  of the system, two sets of unknown coefficients 
X = (X0, X1, ⋯, XN ) and U = (U0, U1, ⋯, UN ) are solved, resulting in 
a minimal discrete performance index function

J =
tf − t0

2 ∑
i =0

3

∥ Ui ∥2wi
(21)

 Further, the following discrete system dynamic equation 
constraints can be satisfied:

∑
i =0

N

Dki X1i =
tf − t0

2 ( f (Xk ) + g (Xk )Uk ) (22a)

∑
i =0

N

Dki X2i =
tf − t0

2 ( f (Xk ) + g (Xk )Uk ) (22b)

∑
i =0

N

Dki X3i =
tf − t0

2 ( f (Xk ) + g (Xk )Uk ) (22c)

where k = 0, 1, ⋯, N , f (Xk ) , and g (Xk )  are elements in the state 
equation of the hopping robot system.

In actual robot control, there are limitations on motor torque 
and speed, so there are upper and lower limits on the actual 
control input of the system, which can be expressed as discrete 
inequality constraints as shown in the following equation:

|Uik | ≤ Umax (23)

where i = 1, 2, 3, k = 0, 1, ⋯, N , Umax > 0 is the upper limit of the 
control input.

4. Results
The physical parameters of the robot based on the hopping 
pattern of the kangaroo is determined as shown in Table 1.

Table 1. Physical parameters

Component number i 1 2 3
Length of rod li /(m) 0.11 0.26 0.174

Centroid moment separation lSi /(m) 0.11 0.105 0.082

Mass of rod mi /(kg) 4.24 0.06 0.14

Moment of inertia Ji /(kg⋅m2) 0.034 0.0033 0.0038

 The initial and terminal positions of the given motion planning 
of the hopping robot system are x0 = [ − 5∘, − 25∘, − 18∘ ]T and 
xT = [ − 5∘, − 125∘, − 35∘ ]T , respectively. The flight time T = 0.5, 
P0 = 0.02, and the control constraints are u1max = 6rad/s , 

u2max = 6rad/s . The simulation results are shown in Figures 2-4. 
It can be seen that the hopping robot can complete the motion 
planning requirements and reach the preset goal position 
within the given time.

Figure 2. Posture diagram during flight phase

 From Figure 3 it can be seen that the joint trajectory of the foot 
shows a trend of first rising and then falling, which means that 
the foot lifts inward and then quickly swings downwards during 
most of the flight phase, preparing to touch the ground. The 
range of changes in the ankle joint is the largest among the 
three curves, approximately from 48 ° to 205°. The range of 
body swing is relatively small, ranging from -16° to 5°, and the 
changes are relatively gentle.

Figure 3. Joint angles of the hopping robot

Figure 4 is the control input for the hopping robot, which is the 
input angular velocity of the hip and ankle joints. It can be seen 
that when the control input exceeds the speed limit, the limit 
value of the control input is taken as a straight line.

1) The effect of initial angular momentum on hopping 
performance

In Haldane et al. [6], the stability of the hopping robot’s flight 
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Figure 4. Control input of the hip point

movement was investigated. It was proposed that in the flight 
stage, when the total angular momentum regarding the robot’s 
center of mass was very small, the flight movement was in a 
stable state. Since the angular momentum regarding the robot’s 
center of mass is conserved in the flight phase, the angular 
momentum of the robot in flight is determined by the initial 
angular momentum P0. P0 has a significant impact on the 
robot’s movement during the flight phase.

As can be seen from Figure 5, with the increase of the initial 
angular momentum, the maximum allowable flight stage 
continues to decrease. When P0 < 0.01, the maximum duration 
shows an exponential decreasing trend. Due to the decrease in 
the duration of the flight phase, the height of the hopping (the 
maximum height of the robot’s center of mass during the flight 
phase) decreases, and the foot may collide with the ground. 
When P0 = 0, the flight phase can be arbitrarily taken. It can be 
seen from Figure 6 that with the increase of the initial angular 
momentum, the performance index, i.e. energy consumption, 
increases accordingly, and the change of energy consumption 
and initial angular momentum is approximately in a straight 
line. It is can be drawn a conclusion that the existence of initial 
angular momentum is a very unfavorable factor for motion 
planning. Therefore, in the control process, the initial angular 
momentum at the take-off should be zero as far as possible.

Figure 5. Maximum flight time vs. initial angular momentum

Figure 6. Performance index vs. initial angular momentum

2) The effect of flight time on hopping performance

In this section, the impact of flight time on hopping 
performance is discussed when initial angular momentum P0 
equals 0. Figure 7 shows the curve of performance indicator J  as 
a function of flight time. When the initial angular momentum is 
zero, the flight time can be arbitrarily selected. It can be seen 
that as the flight time increases, the performance indicator J  
decreases, that is, the energy consumption decreases, and 
changes sharply within 0.5 seconds. As time increases, the robot 
has sufficient time to change the position of the joint angle, 
resulting in a smaller input and lower energy consumption. But 
at the same time, as time increases, the height of the hopping 
increases, and the vertical velocity of the center of mass at take-
off also increases, requiring the robot to provide greater force . 
Therefore, it is necessary to comprehensively measure and 
select the appropriate time.

 From Figure 8, it can be seen that as the flight time decreases, 
the movement distance of the hopping robot’s center of mass in 
the horizontal direction decreases, and the height in the vertical 
direction decreases, resulting in the robot’s foot height being 
less than 0 in the first 0.02 seconds, indicating a collision 
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Figure 7. Performance indicator J  vs. flight time T

between the foot and the ground. Figure 9 shows the posture 
diagram. It can been seen that at the end of the flight phase the 
foot of the hopping robot touch the ground. It indicates that the 
flight phase is over. The negative height of the robot’s foot 
during flight phase indicates a collision between the robot’s and 
the ground.

Figure 8. Trajectory of tip of the foot at different flight times

5. Conclusions
In this paper the energy optimal motion planning problem of 
the hopping robot with three links in the flight phase is 
investigated. First, the conservation equation of angular 
momentum of the hopping robot in the flight phase is 
established which is a non holonomic constraint. Then, the 
energy consumption of the robot during the flight phase is 
selected as the optimization goal. Given the initial and terminal 
positions, the Gaussian pseudospectral method is used to solve 
the optimal control problem. The conclusion can be drawn as 
follows:

1) The initial angular momentum has a great impact on the 

Figure 9. Posture diagram during flight phase at T =0.1

performance of the hopping robot. The larger the initial angular 
momentum is, the smaller the maximum allowable flight time of 
the robot will be. When the initial angular momentum is zero, 
the flight time can be chosen arbitrarily;

2) When the initial angular momentum is zero, the longer the 
flight time is, the smaller the energy consumption is, and the 
greater the flight distance and height are. However, the higher 
the velocity of the robot in the vertical direction of the center of 
mass at flight, the greater the force required by the robot. The 
smaller the flight time, the smaller the flight distance and 
altitude, and the less force required for flight. However, the 
energy consumption increases, and the robot’s foot may collide 
with the ground. So it is necessary to comprehensively measure 
and select a suitable time for flight.
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