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Abstract
Degenerative polyarthritis is the most common joint disease and affects millions of people 
worldwide. However, there is currently no cure for degenerative polyarthritis and no 
effective methods to prevent or slow down its progression. Gene regulatory relationships 
are vital for understanding disease mechanisms and developing treatment and novel drugs. 
Gene regulatory networks can be obtained from the RNA sequencing. Although various 
single-cell and bulk RNA sequencing data are available, an effective method to integrate the 
data for molecular diagnosis and treatment of degenerative polyarthritis has not yet been 
carried out. Here, we propose a novel deep learning-based method to efficiently capture the 
gene regulatory features of degenerative polyarthritis. First, we integrate single-cell RNA 
sequencing data-based gene regulatory network to model the gene regulatory relationships 
between genes and transcription factors as node feature aggregation. Second, we propose 
a graph convolutional model named dpTF-GCN on gene regulatory graph to transmit and 
update the node feature for potential associated genes predicting. According to the results, 
dpTF-GCN achieved the best performance among represented network-based methods. 
Furthermore, case studies suggest that dpTF-GCN can identify potential associated genes 
accurately. Our research not only provides theoretical and methodological support for the 
study of degenerative polyarthritis, but also provides a research case for the application of 
graph neural network-based identification of associated genes in other diseases.
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1 Introduction
Degenerative polyarthritis is a non-inflammatory disease that 
affects the joints by causing damage to the cartilage and tissues 
surrounding them [1]. It is also known as osteoarthritis. It is the 
most common joint disease and affects millions of people 
worldwide [2]. The risk of developing degenerative polyarthritis 
increases with age and with occupations or activities that put 
high stress on the joint, such as heavy labor or sports [3]. 
Therefore, the prevalence and burden of this disorder is 
expected to rise rapidly in the aging population and in the 
modern society. Degenerative polyarthritis has no cure and no 
effective methods to prevent or slow down its progression. The 
current treatments mainly aim to relieve pain and improve 
function, but they have limited efficacy and side effects [2]. Knee 
arthroplasty, a surgical procedure to replace the damaged joint 
with and artificial one, can provide some relief of symptoms, but 
it cannot restore the normal function and activity level of the 
patient [4]. Degenerative polyarthritis is a complex disease that 
involves various pathophysiological processes that affect the 
whole joint structure and function [5]. To understand the 
molecular mechanisms underlying this disease and to identify 
new biomarkers and therapeutic targets, it is necessary to use 
deep learning-based system biology approaches that can 
integrate and analyze large-scale data from different sources 
[6].

In recent years, deep learning methods have been applied in 
various fields of medicine and bioinformatics, such as prediction 
for associations between miRNA and disease [7-9], associations 
between gene and disease and associations between 

metabolite and disease [10-12]. These methods have promoted 
the development of computational models for identifying 
complex disease uncovered associated genes. Deep learning 
techniques are based on artificial neural networks (ANN), also 
known as representation learning techniques, which can 
identify hidden patterns of the data without requiring an explicit 
feature extraction [13]. In other words, deep learning-based 
architectures make automatic feature extraction possible. For 
disease association genes prediction, different deep learning 
architectures have been successfully applied, such as deep-
neural network (DNN) has been adopted for aging-related 
diseases associated genes prediction [14], deep-autoencoder 
(DA) is used for detection of Parkinson’s disease association 
genes [15] and convolutional-neural network (CNN) is also 
adopted for predicting lung tumor [16]. However, the molecular 
mechanism of disease is complex and cannot be ignored. Graph 
provides a natural framework for disease mechanism 
prediction, which are widely used to capture interactions 
between individual elements represented as nodes in graph. In 
disease associated genes prediction, specifically, nodes can 
represent genes or other functional regulatory elements, while 
the graph edges incorporate associations between genes or 
genes and regulatory elements in an intuitive manner. The 
graph neural network (GNN) is a deep learning model that 
focuses on graph data and has been used to perform many 
bioinformatics tasks [17-19]. Graph convolutional network (GCN) 
is a representative GNN models, aims to learn node 
embeddings by implementing the convolution operation on a 
graph based on the attributes of neighborhood nodes [11]. GCN 
has achieved satisfactory results in the construction of many 
disease associated genes prediction model, such as Alzheimer’s 
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disease [20], Parkinson’s disease [21], and some rare diseases 
[22]. As far as we know, the GCN-based deep learning model 
has not yet been developed for the prediction of degenerative 
polyarthritis associated genes.

Bulk expression data and single-cell transcriptomic data are two 
common types of gene expression profiles. Bulk expression 
data have large sample sizes but they mix the expression levels 
of all cells in a sample or tissue, hiding important differences 
and signals between cells. Single-cell transcriptomic data can 
reveal more information about each cell’s gene expression 
changes during differentiation, cell type features and other 
biological aspects [23-25]. Moreover, single-cell transcriptomic 
data can help to build gene regulatory network (GRN) at the 
single-cell level and understand how expression regulation 
differs across cell types [26]. For instance, many studies recently 
found that transcription factors (TFs) could control different 
genes in different subtypes of human pancreatic islets and that 
GRN dynamics was a key factor for pancreatic cell expression 
diversity [27]. Also, GRN reprogramming could affect melanoma 
progression and resistance to therapy [28] and single-cell GRN 
analysis revealed increased expression of cell-type-specific TFs 
in the bronchoalveolar immune cells of COVID-19 patients, 
indicating a highly inflammatory macrophage environment in 
the lungs of server COVID-19 patients [29]. Thus, GRN and the 
expression patterns of TFs and their target genes are crucial to 
fully grasp the mechanisms of disease pathogenesis.

In this study, we propose a model based on the graph 
convolutional neural network, named dpTF-GCN, to predict 
potential genes that are associated with degenerative 
polyarthritis, a common form of arthritis that affects the joints. 
The dpTF-GCN makes full use of topological information of 
heterogeneous networks that consist of TFs and target genes, 
as well as the data of similarities among TFs and target genes. 
We constructed a heterogeneous network composed of nodes 
representing genes and TFs. The nodes were connected by 
edges based on their regulatory relationships and regulatory 
similarity. We adopted a GCN-based approach to learn the 
feature representations of genes and TFs from the network 
structure and node attributes. We also designed an end-to-end 
framework to automatically optimize model parameters using 
gradient descent. We evaluated the performance of dpTF-GCN 
using a ten-fold cross-validation and compared it with other 
state-of-the-art prediction methods for degenerative 
polyarthritis associated genes. The results showed that dpTF-
GCN achieved significantly higher accuracy and recall than other 
methods. Furhermore, we conducted case studies to 
demonstrate that dpTF-GCN can successfully infer potential 
disease-associated candidate genes that are supported by 
existing literature or biological databases.

2 Materials and Methods

2.1 Data collection
As degenerative polyarthritis is a common disease that affects 
the joints and bones of human, we obtained gene regulatory 
network (GRN) constructed by single-cell sequencing data of 
human bone marrow from GRNdb [30] to investigate the 
molecular mechanisms of this disease. This database is a 
valuable resource that provides gene regulatory network 
datasets for various human tissues and cell types. In these 
datasets, the nodes represent transcription factors (TFs) and 
target genes, and the edges represent the regulatory 
relationships between them. To identify the genes that are 
associated with degenerative polyarthritis, we used DisGeNET 
as a reference database [31]. This database contains a large 
collection of genes that have been linked to various human 
diseases based on different types of evidence. These genes have 

been widely used in different studies to explore the genetic 
basis of diseases [32-34].

2.2 Network construction
Here, denoting that G = {G1, G2, G3… Gg }  is a set of g  genes, 
T = {T1, T2, T3… Tt }  is a set of t  TFs. To clarity, we denote the 
gene regulatory network as a matrix MGT ∈ Rg ×t , the gene-gene 
similarity network is a matrix MGG ∈ Rg ×g  and the TF-TF 
similarity network is a matrix MTT ∈ Rt ×t . Mathematically, the 
specific content and calculation process of these matrices are as 
follows:

MGT = [ w1,1 ⋯ w1,t

⋮ ⋱ ⋮
wg ,1 ⋯ wg ,t ]#(1)

MGG = [ s1,1 ⋯ s1,t

⋮ ⋱ ⋮
sg ,1 ⋯ sg ,t ]#(2)

MTT = [ x1,1 ⋯ x1,t

⋮ ⋱ ⋮
xg ,1 ⋯ xg ,t ]#(3)

 where wi ,j (i ∈ g , j ∈ t ) is the weight of the links directed from 
TFs to target genes, the higher weights correspond to more 
likely regulatory links, si ,j (i ∈ g , j ∈ g ) and xi ,j (i ∈ t , j ∈ t ) is the 
similarity between gene pairs and TF pairs, respectively.

Since the GRNdb only provides gene regulatory network, we use 
the Jaccard index as si ,j  and xi ,j  for network constructing [35,36]. 
The si ,j  and xi ,j  can be calculated by:

si ,j =
Ti

g ∩ Tj
g

Ti
g ∪ Tj

g #(4)

xi ,j =
Gi

t ∩ Gj
t

Gi
t ∪ Gj

t #(5)

 where Ti
g  is the set of TFs linked to Gi ( i ∈ g )  , Tj

g  is the set of TFs 
linked to Gj ( j ∈ g )  ; Gi

t  is the set of target genes linked to 
Ti (i ∈ t ), Gj

t  is the set of target genes linked to Tj ( j ∈ t ).

2.3 Model architecture
To fully capture the imperceptible information of gene 
regulation relationships, we adopted graph structure data and 
GCN for feature representation. GCN is a multilayer connected 
neural network architecture for information aggregation and 
learning low-dimensional representations of nodes [37], which 
can be an effective method for extracting useful information 
from intricate gene regulatory networks. Specifically, the input 
of GCN is a graph GG −T = (ν , ϵ )  with ν = (G , T )  representing G  
gene nodes and T  TF nodes, and ϵ  is a set of edges between 
each node. As some nodes ν  in GG −T  are known to be associated 
to degenerative polyarthritis, the aims of model to classify 
whether one node is associated to degenerative polyarthritis.

Here, denoting the GG −T  is represented by an adjacency matrix 
AG −T ∈ R(G +T )×(G +T ). The weight of edges as the feature of each 
node and the node feature matrix can be represented as 
BG −T ∈ R(G +T )×(G +T ). The graph convolution is defined on graph 
as the product of the input signal after the filter gθ  in the 
Fourier domain. According to the definition of GCN original 
model architecture, the symmetric normalized Laplacian matrix 
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of AG −T  is LG −T = UG −T ΛG −T UG −T
t , where ΛG −T = diag (μ1, μ2, μ3,

…, μG +T ) is the diagonal matrix of eigenvalues. As the feature 
matrix BG −T  needs to undergo the Fourier transform, this can 
be represented as UG −T

t BG −T . The Chebyshev polynomials 
TK (x ) = 2xTK −1 (x ) − TK −2 (x )  was used to reduce the 
computational complexity38. The filter gθ  can be mathematically 
represented as:

gθ (ΛG −T ) = ∑
K =0

K

θK TK (Λ~G −T )#(6)

gθ ∗ BG −T = ∑
K =0

K

θK TK ( L~ G −T )BG −T #(7)

 where θ ∈ RK  is a vector of Chebyshev coefficients, Λ~G −T =
2ΛG −T
μmax

− IN , L~ G −T = 2LG −T
μmax

− IN , IN  is the identity matrix and K is 

the Kth-order neighborhood.

The formulation can simplify by limiting K=1 as the Chebyshev 
polynomials is recursively [38,39]. After activation functions 
were introduced in each layer ( l > 0)  , the graph convolution 
operation can be represented as follows:

gθ ∗ BG −T = ReLU (θ (DG −T
− 1

2 ( IN + AG −T )DG −T
− 1

2 ) )#(8)

[ HG
HT ] = gθ ∗ BG −T #(9)

 where DG −T  is the diagonal matrix with diagonal entry 

[DG −T ]i ,j = ∑
j

[AG −T ]i ,j , HG  is the embedding of genes and HT  is 

the embedding of TFs.

To make the model as an end-to-end binary classifier, we use 
the embedding vectors from GCN as the input of multi-layer 
perception (MLP). The category scores were computed by the 
sigmoid function that follows the output of the last hidden layer, 
as follows:

S = Sigmoid (Wout ⋅ [ HG
HT ] + bout )#(10)

 where S  is the scores of a gene associated to degenerative 
polyarthritis, Wout  and bout  are the weight matrix and bias 
vector.

The model optimizer is cross-entropy loss L :

L = ∑
i ,j ∈Y ∪Y−

(yij log ŷ ij + (1 − yij ) log (1 − ŷ ij ) )#(11)

 where yij  represents the true label of the nodes, which will be 1 
or 0, Y  and Y− denote the set of all nodes contained in the 
positive nodes set and negative nodes set, respectively. The 
model was trained by back propagation algorithm in an end-to-
end architecture (Figure 1).

Figure 1: The workflow of dpTF-GCN

2.4 Experimental setting and hyperparameters

We used ten-fold cross-validation (10-CV) to test the 
performance of dpTF-GCN. Because of the limited number of 
true labeled genes, we randomly selected 10 genes as the 
validation dataset for case study and excluded them from the 
training and testing process. The remaining known associated 
genes were randomly divided into ten equal-sized subsets. We 
repeated the cross-validation process ten times and used each 
subset as the testing dataset once while using the other nine 
subsets as the training dataset. We chose AUC and AUPR as the 
main evaluation metrics because they can measure the 
performance of model without a specific threshold. We also 
computed some threshold-based metrics such as precision 
(PRE), recall (REC), accuracy (ACC) and F1-score (F1).

The hyperparameters in dpTF-GCN are the number of layers 
y ∈ {2, 3}  , learning rate of optimizer γ ∈ {0.00001, 0.00005,
0.0001, 0.0002, 0.0005}  and the total training epochs 
α ∈ {1000, 2000, 4000, 6000, 8000}  . By adjusting the 
parameters empirically, we set y = 3, γ = 0.0001 and α = 4000 
for dpTF-GCN in the following experiments.

3 Results

3.1 Graph construction and model overall 
performance

We obtained a gene regulatory network (GRN) fron GRNdb 
databse [30], which contains information about how 
transcription factors (TFs) regulate the expression of target 
genes. The GRN was derived from human single-cell RNA 
sequencing data of adult bone marrow cells. Thi data set 
consisted of 1,834 cells that were analyzed by the SCENIC 
pipeline [26] to infer the regulatory interactions between 107 
TFs and 4,009 target genes. The resulting GRN had 17,318 TF-
target pairs. We searched the DisGeNET database [31] for genes 
that are associated with degenerative polyarthritis, a common 
joint disease. We found 498 genes in our GRN that were marked 
as degenerative polyarthritis related genes and had supporting 
evidence from biological research. We then constructed a gene-
gene similarity network based on the number of shared TFs 
between each pair of genes. We used the Jaccard Index (JI) to 
measure the similarity score of each gene pair. Similarly, a TF-TF 
similarity network was also built based on the number of shared 
target genes between each pair of TFs. We also used JI to 
quantify the similarity score of each TF pair.

To better identify the potential associated genes of 
degenerative polyarthritis, we deployed a graph convolutional 
neural network(GCN) algorithm to construct an end-to-end 
framework for predicting. Our framework, which we named 
dpTF-GCN, integrates the gene regulatory network and the 
gene-gene similarity network to capture the complex 
interactions between transcription factors and target genes. By 
using graph theory and GCN, our framework can extract the 
features of gene regulation that are relevant to degenerative 
polyarthritis. We evaluated the performance of dpTF-GCN on six 
metrics: area under the receiver operating characteristic curve 
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(AUC), area under the precision-recall curve (AUPRC), precision 
(PRE), recall (REC), accuracy (ACC) and F1-score (F1). All these 
metrics were higher than 0.8 (Figure 2), indicating that dpTF-
GCN can effectively identify potential degenerative polyarthritis 
associated genes. Moreover, we observed that AUC and AUPR, 
which are two metrics that do not depend on a specific 
threshold for classification, were also high (Figure 3). This 
suggest that dpTF-GCN has a good balance between sensitivity 
and specificity in predicting degenerative polyarthritis 
associated genes.

Figure 2: The six-evaluation metrics of model.

Figure 2: Performance during dpTF-GCN training. (A) The AUC 
and AUPR curves generated by dpTF-GCN on each fold dataset; 

(B) The training loss curves of each fold dataset.

3.2 Comparing dpTF-GCN with baseline methods

To demonstrate the superiority of dpTF-GCN especially for 
degenerative polyarthritis associated genes prediction, we 
compared it with other baseline methods by 10-fold cross-
validation on gene regulatory network data. Three 
representative disease associated genes prediction methods 
are used for comparing with dpTF-GCN, including the PMFMDA 
which employ matric factorization strategy [40], the 
MeSHHeading2vec which conduct feature extraction via graph 
embedding algorithms [41], and the BiRW designed by random 
walk strategy [42]. Each method was conducted prediction tasks 
on the GRN network dataset with the default optimal 

parameters, and the AUC and AUPR were calculated for 
evaluation and comparison. According to the results (Figure 4), 
dpTF-GCN outperforms all comparison methods in terms of 
both evaluation metrics. Compared with the matrix 
factorization, graph embedding and random walk-based 
methods (PMFMDA, MeSHHeading2vec and BiRW), the GCN-
based method dpTF-GCN achieves 13.3% and 26.8% 
improvement on average over them in terms of AUC and AUPR, 
respectively. The graph convolutional network-based strategy 
performs better than other feature extraction strategy, 
suggesting that GCN may lead to better aggregation of graph 
topological information.

Figure 4: Comparisons with other different methods on same 
dataset

3.3 Ablation experiment of graph components

To test the effectiveness of different components in the 
heterogeneous graph used in dpTF-GCN, we conduct an 
ablation study. This involved performing leave-one-out 
validation on each part of the graph to determine whether all 
components were necessary for effective feature extraction and 
predicting. The heterogeneous graph used in dpTF-GCN 
consists of three components: a transcription factor and target-
gene regulatory network (G-T), a gene similarity network (G-G), 
and a transcription factor similarity network (T-T). Since the goal 
of dpTF-GCN is to predict potential degenerative polyarthritis 
associated genes by aggregating gene regulatory information, 
the G-T network is considered an essential part of the graph for 
information aggregation and convolution.

Here, we denote three types of experiments: MASK-GG, MASK-
TT and MASK-GGTT. The MASK-GG experiment represents graph 
used in our model without G-G network. The MASK-TT 
experiment denotes an experiment without T-T network, and 
MASK-GGTT represents our model only conduct on a graph of 
G-T network. The results of these experiments showed that 
removing either the G-G or T-T networks resulted in a decrease 
in both AUC and AUPR values by more than 15% (Table 1). This 
suggests that all three components are important for effective 
and accurate predicting.

Table 1: The ablation experiment of dpTF-GCN on the 
heterogeneous graph

Evaluation 
metrics MASK-GG MASK-TT MASK-GGTT

AUC 0.697±0.021 0.712±0.032 0.611±0.019
AUPR 0.711±0.030 0.739±0.026 0.663±0.022
PRE 0.578±0.041 0.581±0.024 0.489±0.033
REC 0.523±0.022 0.492±0.031 0.552±0.017
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ACC 0.512±0.030 0.522±0.014 0.537±0.021
F1 0.549±0.027 0.530±0.025 0.519±0.023

 Notably, when both G-G and G-T networks are removed, the 
AUC of dpTF-GCN drops sharply to 55% and the AUPR is only 
60%. The results demonstrate that topology graph modeling is 
necessary for fully feature extraction, and the combination can 
improve the prediction performance significantly.

3.4 Case studies
In this section, we use dpTF-GCN to make predictions on the 
validation dataset. This dataset contains 10 labeled genes that 
have been supported by literature and biological databases but 
were not used in the training or testing steps. This means that 
the validation dataset has never been seen by dpTF-GCN before 
and can effectively demonstrate the model’s generalization. The 
results of case study show that dpTF-GCN was able to 
successfully classify all the genes in the validation dataset with 
high probability scores (Table 2). All the ten genes for validation 
have been supported by existing biological research. For 
example, the gene P2RX7 had the highest score of 0.911 and 
had six pieces of literature evidence supporting its association 
with degenerative polyarthritis. Overall, these results suggest 
that dpTF-GCN is an effective and general tool for predicting 
new associated genes of degenerative polyarthritis.

Table 2: The prediction score and literature evidence of ten 
genes in validation dataset

Gene dpTF-GCN score Literature evidence

P2RX7 0.911
PMID:22447075, PMID:30317598, 
PMID:24934217, PMID:29511609, 

PMID:28343378, PMID:29845461
TBX5 0.910 PMID:31376087, PMID:25320281

IL33 0.903 PMID:29867945, PMID:26520876, 
PMID:21441054, PMID:29095435

RNR2 0.898 PMID:15567815
SAA2 0.877 PMID:25849372
CPB1 0.871 PMID:24449579, PMID:21804193

MGP 0.866 PMID: 21724703, PMID: 31215457, 
PMID: 28855172

TNNC1 0.855 PMID:21762512, PMID:28722504

TKTL1 0.843 PMID:28719557, PMID:27996342, 
PMID:29143404, PMID:30671597

PRPF3 0.829 PMID:31268737

4 Discussions
Network-based methods are widely used for predicting and 
analyzing the associations between biological entities, such as 
genes and diseases. In this study, we propose a novel GCN-
based computational approach, called dpTF-GCN, to predict the 
genes that are associated with degenerative polyarthritis. Our 
method dpTF-GCN can automatically learn the low-dimensional 
representations of genes and transcription factors by 
systematically integrating the complex topology of the 
heterogeneous network that consists of gene regulatory 
relationships, the neighborhood information of genes and 
transcription factors, and the gene- and transcription factor-
specific attributes. The learned embeddings and the associated 
genes classification models are jointly optimized in an end-to-
end fashion. We conduct extensive experiments to evaluate the 
performance of our method on recovering missing associated 
genes from the training data, and on discovering novel 
potential associated genes for degenerative polyarthritis that 
are not present in the training data. Satisfactory results confirm 

the excellent performance of dpTF-GCN.

In dpTF-GCN, we use gene-gene and TF-TF similarity networks to 
capture the functional relationships between genes and 
transcription factors. These networks are constructed by 
computing the Jaccard index (JI) based on the overlap of 
transcription factors or target-genes for each pair of genes or 
transcription factors. This method reflects the similarity of their 
regulatory roles rather than their structural or sequence 
features [43,44]. Moreover, our gene regulatory network is 
derived from single-cell RNA sequencing data, which can 
provide more insights into the dynamic changes of gene 
expression during differentiation, the characteristics of different 
cell types and other biological aspects. By integrating these 
networks into a heterogeneous graph, we can incorporate 
diverse and rich gene regulatory information into dpTF-GCN. 
This may be one of the reasons why dpTF-GCN achieves 
excellent performance in predicting cell type-specific 
transcription factors.

Degenerative polyarthritis is a condition that causes 
inflammation and pain in multiple joints and there is a need for 
more effective and personalized treatments for it. Our research 
aims to address this need by providing a novel approach for 
identifying potential associated genes for degenerative 
polyarthritis. We use a sophisticated GCN model that can 
capture both local and global features of the gene regulatory 
information. The dpTF-GCN not only offers as a new way to treat 
degenerative polyarthritis at the molecular level but also 
provides a valuable resource and method for screening drug 
targets. Furthermore, our research also has implications for the 
integration of artificial intelligence and precision medicine.
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