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Abstract
To enhance the applicability of discrete element method in 3D slope stability analysis, a BP 
neural network-based micro parameter calibration method and an energy criterion are 
proposed by taking MatDEM as an example. Firstly, the relationship between the micro 
particle parameters and the shear strengths of particle aggregate are represented by using 
the BP neural network. And then the micro particle parameters are obtained for the given 
shear strengths by using a correction calibration. Next, the energy conversions are 
investigated for the stable and instable slope models in MatDEM. From a view of practical 
application, the abrupt in variation tendency and magnitude of the kinetic energy is 
selected for indicating the emergence of the limit equilibrium state of a slope. Finally, the 
effectiveness of the proposed improvements is testified by taking Baijiabao landslide as an 
example. Results verify that the calibration method established in this study is applicable to 
provide the micro particle parameters when the shear strength is constantly reduced, and 
the factor of safety determined by the kinetic energy criterion reflects the landslide stability 
at the global level.
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1. Introduction
Slope stability analysis is a classic problem in geotechnical 
engineering. Three dimensional (3D) analyses has some 
significant advantages over two dimensional (2D) analyses in 
the slope stability analysis that the geometry structure, 
boundary conditions and spatial variations of a slope is fully 
took into account. The limit equilibrium method (LEM) mainly 
developed in the last century is still the most popular 
methodology among engineers. A considerable amount of 
research has developed 3D LEM from different point of views 
such as the method of columns, rigorous solutions [1] or 
utilizing lower bound theorems [2]. The progress in the 
development of 3D LEM theory till 2021 has been sumarized by 
Firincioglu [3]. To achieve an accurate result by 3D LEM, slope 
and slip surface geometry including geological structures must 
be precisely determined in the model, which is not always 
possible in natural instabilities with complex geology.

With the advances of computers, numerical analysis methods 
have become affordable to engineers, such as the finite element 
method (FEM) [4-5], discrete element method (DEM) [6-7] and 
others [8-15]. These numerical methods fall into two categories, 
continuum-based and discontinuum-based numerical methods. 
The latter kind of methods, e.g. DEM, overcome the limitation of 
the assumption of macro-continuity in the former kind of 
methods, and are capable of simulating the generation and 
development process of the slip surface. Due to these 
advantages, DEM is becoming increasing popular for slope 

stability analysis in situation where the continuum-based 
numerical model is inapplicable [16-18].

When analyzing the slope stability using numerical methods, 
the strength reduction method (SRM) [19] is a commonly used 
strategy for determining the factor of safety (FOS) of a slope. 
The SRM was initially proposed for FEM analysis of slope 
stability [20]. SRM continuously reduces the shear strength of 
soil and rock until a slope reaches a limit equilibrium, and then 
the reduction factor is considered as the FOS of a slope. 
Theoretically, SRM can be apllied in DEM similarity to the 
application of SRM in FEM. But, two critical issues are expected 
to be addressed when analyzing the slope stability by applying 
SRM in DEM.

The first critical issue is how to reduce the shear strength of soil 
and rock in the DEM modeling. DEM simulates the mechanical 
properties of soil and rock from the micro point of view, and the 
relationship between the macro parameters of soil and rock and 
the micro parameters of particles is complicated. Theoretical 
and numerical approaches were used to reveal this relationship 
for soil and rock simulated by different models, e.g. the bonded 
particle model [21-22], the flat jointed model [23], the close-
packed lattice model [24], and the coarse grained particle model 
[25]. But, a rigid theory is still not available to ensure the 
magnitude of the relationship between macro parameters and 
micro parameters [16]. The trial-and-error calibration remains 
the usual approach to obtain the micro parameters of particles 
corresponding to the macro parameters [26], even if it exhibits 
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high computing costs. In slope stability analysis by using SRM in 
DEM, the shear strength is constantly reduced, which means 
that the micro parameters are necessary to be adjusted 
correspondingly. To avoid the cumbersome calibration on the 
micro parameters, the shear strength reduction is usually 
simplified as the reduction of several micro parameters [27-28] 
based on the regression analysis of the effect of micro 
parameter on macro property. The simplification may results in 
the FOS deviating from its original definition, in view of the 
complicated relationship between the shear strength and the 
micro parameters.

With the rapid development of neural network technology, 
recently many researchers attempted to establish an intelligent 
method to represent the relationship between macro and micro 
parameters for DEM simulation. Albeit some sophisticated 
algorithms have been employed for accomplishing this object, 
e.g. the improved simulated annealing algorithm [29], a 
sequential quasi-Monte Carlo filter [30] and the non-dominated 
sorting genetic algorithm [31], the backpropagation (BP) neural 
network is still the most commonly used algorithm in the 
previous attempts [32-35] due to its simplicity and widely 
available software. However, BP neural network is possible to 
obtain a result with a low precision when the output layer has 
more neurons than the input layer, even if a considerable 
amount of samples are collected [35]. Therefore, BP neural 
network has potential to be used in the reduction of the shear 
strength in the DEM modeling, while a reliable way is to be 
developed.

The second critical issue is how to determine the FOS when 
applying SRM in DEM to analyze the slope stability. The target is 
to establish an appropriate criterion to indicate that a slope is in 
the limit equilibrium state. When analyzing the slope stability by 
using SRM in FEM, whether the slope is in the limit equilibrium 
state is usually evaluated by using three criteria: (1) penetration 
of the plastic zone in the slope, (2) convergence of the 
unbalance force, and (3) an abrupt change in the displacements 
of selected characteristic points. These criteria cannot be simply 
duplicated into the slope stability analysis by using SRM in DEM. 
In many DEM modelings, the particles are treated as rigid 
bodies, and thus there will be no plastic zone, which induces 
that it is impossible to employ the first criterion for the DEM 
analysis of the slope stability. In case some particles fall or a 
small region of the slope is deformed, the unbalance forces in 
the DEM modeling will not convergence, while actually the slope 
is still stable overall. Thus, it is unreasonable to judge whether 
the slope is unstable based on the second criterion [36]. 
Similarly, in views of the fact that the displacement 
characteristic of some selected points cannot reflect the overall 
behavior of the entire slope, it is improper to determine 
whether the entire slope is unstable based on the third criterion 
[37]. To avoid the limitations of the traditional criteria, the 
abrupt change in the vector graphic of global displacements 
[38], the variation coefficient of global displacements [36], and 
the slope failure extent [16] have been used as the failure 
criterion in the slope stability analysis by using SRM in DEM. 
These criteria are capable to represent the slope stability at the 
global level, but they are inapplicable in some cases. For 
example, the vector graphic of global displacements may be 
quite disordered for a complex slope, and it is difficult to 
evaluate significant changes. Thus, a reasonable criterion is 
expected to determine the FOS when analyzing the slope 
stability by using SRM in DEM.

The fast GPU matrix computing discrete element method 
(MatDEM) [39] is a newly developed code based on the DEM 
theory and MATLAB, which has been verified as an effective 
numerical simulations by many examples [40-43]. Since matrix 
operations and high-performance GPU calculations are used in 

the code, its computational efficiency is significantly improved. 
By taking MatDEM as an example, two improvements are 
proposed in this study to address the aforementioned two 
issues. Firstly, to precisely represent the reduction of the shear 
strengths of the geological material in the MatDEM modeling, 
the relationship between the macro shear strengths and the 
micro particle parameters is represented by an overdetermined 
BP neural network, and a correction calibration is developed to 
obtain the micro particle parameters corresponding to the 
original and reduced shear strengths. Then, to reasonably 
determine the FOS of a slope at the global level, the energy 
conversion and heat generation during the failure of a slope are 
fully investigated, and thus an energy criterion is developed for 
the application of SRM in MatDEM to evaluate the slope stability. 
Finally, the validity of the proposed strategies is testified by 
taking Baijiabao landslide situated in Zigui County, Hubei 
Province of China as a case study.

2. Fundamental principles of the MatDEM

2.1 Contact model of particles

The basic model of the MatDEM code is a series of 3D close-
packed elastic particles as shown in Figure 1a, and these 
particles interact through the spring forces (Figure 1b).

(a) 3D close-packed elastic particles

(b) Normal and tangential springs between two particles

Figure 1. The contact model of particles in MatDEM

 The normal force Fn  and the normal relative displacement Xn  
between two adjacent particles are simulated by a normal 
spring:
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Fn = {Kn Xn ,
0,

Kn Xn ,
 
Xn ≤ Xb ,  intact 
Xn ≥ 0,  broken
Xn < 0,  broken

 
(a)
(b)
(c)

(1)

where Kn  is the stiffness of the normal spring, and Xb  is the 
breaking displacement. Initially, the particles are interconnected 
with their adjacent particles and subjected to tensile or 
compressive spring forces as Eq. (1a). In case of Xn  between the 
particle pair exceeding Xb , the spring breaks and the tensile 
force ceases to exist between them (Eq. (1b)). However, the 
compressive force may act between them when they return to a 
compressive status (Eq. (1c)). It is noticed that the tensile force is 
positive, and the compressive force is negative in Eq. (1).

The shear force Fs  and the tangential relative displacement Xs  
between two particles are simulated by a tangential spring:

Fs = Ks Xs (2)

where Ks  is the stiffness of the tangential spring. The tangential 
spring also has a fracture criterion based on the Mohr-Coulomb 
yield criterion:

Fsmax = {Fs 0 − μp Fn ,

− μp Fn ,
 intact 
 broken

 
(a)
(b)

(3)

where Fsmax  is the inter-particle shear resistance, Fs 0 is the 
initial inter-particle shear resistance when no normal force 
exists, and μp  is the inter-particle coefficient of friction. When 
the tangential force Fs  exceeds Fsmax  in Eq. (3a), the tangential 
spring will break, whereupon the shear force Fs  is limited to be 
less than or equal to the inter-particle shear resistance Fsmax  of 
the broken spring. If the tangential spring is broken and the 
magnitude of external shear force exceeds the limit Fsmax  in Eq. 
(3b), two particles begin slipping, and the slipping friction 
between them is Fsmax  in Eq. (3b).

2.2 Energy system of the MatDEM modeling

The MatDEM modeling follows the law of energy conversation 
and Newton’s law of motion. The energies of a model fall into 
two categories, mechanical energy and heat. A brief 
introduction of their compositions is given as follows.

(1) The mechanical energy in the system consists of elastic 
potential energy, gravitational potential energy and kinetic 
energy. The elastic potential energy Ee  is the sum of the strain 
energy of normal and tangential springs between particles:

Ee = 1
2 Kn Xn

2 + 1
2 Ks Xs

2 (4)

 The gravitational potential energy Eg  of a particle is:

Eg = mgh (5)

where m  is the particle mass, g  denotes the gravity 
acceleration, and h  represents the height above the reference 
level. The kinetic energy Ek  of a particle is computed as:

Ek = 1
2 mv2 (6)

in which v  is the scalar of particle velocity.

(2) The heat in the system comes from the viscous damping, the 

spring breaking and the friction. Damping is used in the 
MatDEM to weaken the elastic wave energy of the model and 
dissipate the kinetic energy in the system. The damping force 
Fd  is given by

Fd = − ηv (7)

where η  is the damping coefficient and v  is the vector of 
particle velocity. Because the time step of the simulation is very 
small, the particle velocity is assumed to be constant in a step. 
Viscous heat Qd  generated by viscous damping is calculated by

Qd = − Fd ⋅ dx (8)

in which dx  denotes the particle displacement in the current 
time step.

When an intact spring breaks, the spring force reduces, and the 
elastic potential energy of the inter-particle normal spring 
and/or tangential spring will dissipate into heat. Thus, breaking 
heat is equal to the reduction of the elastic potential energy Ee . 
The calculation of breaking heat is based on the status of the 
inter-particle normal force. If the inter-particle normal force is 
tensile, both the normal and tangential spring forces will reduce 
to zero, and thus the breaking heat Qb  is the sum of elastic 
potential energy of both normal and tangential springs:

Qb = 1
2 Kn Xn

2 + 1
2 Ks Xs

2 (9)

 If the normal force is compressive, the normal spring force will 
not be changed, and the tangential spring force reduced from 
Fsmax  in Eq. (3a) to Fsmax  in Eq. (3b). The breaking heat Qb  is the 
reduction of the elastic potential energy of the tangential 
spring, which can be calculated by

Qb = ( (Fs 0 − μp Fn )2 − (μp Fn )2 )
2Ks

=
Fs 0

2 − 2μp Fn Fs 0
2Ks

(10)

 Friction heat Qf  generated during the sliding process is defined 
as the product of the average sliding friction and the effective 
sliding distance:

Qf = |0.5(Fs 1 + Fs 2 ) ⋅ dS | (11)

in which Fs 1 and Fs 2 are the sliding friction forces at respectively 
the beginning and the end of the current time step, and dS  
denotes the effective sliding distance. More details about Eq. 
(11) can be found in [39].

The total energy of a MatDEM model is the sum of all 
mechanical energy and heat:

Etotal = Ee + Eg + Ek + Q (12)

where Q  represents the sum of viscous heat Qd , breaking heat 
Qb  and friction heat Qf :

Q = Qd + Qb + Qf (13)

 Based on the law of energy conversation, the total energy of an 
isolated system is constant. If the system deforms under 
external force, the increment of the total energy must be equal 
to the work done by the external force.
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3. A BP neural network-based micro particle 
parameters calibration

3.1 The structure of the BP neural network to 
predict the shear strength

In this study, the BP neural network is used to establish the 
relationship between the shear strength and micro parameters 
for MatDEM modeling. BP neural network is a multilayer feed-
forward neural network which consists of an input layer, implicit 
layer and output layer as shown in Figure 2 .

Figure 2. Typical structure of BP neural network

 When the value of neurons in the input layer is given, neurons 
in the implicit layer and the output layer are calculated 
according to the following forward propagation:

ui
l = σi

l ( ∑j =1

kl −1

wji
l uj

l −1 + bi
l ) (14)

where l  is the number of layers in the implicit layer, ui
l  denotes 

the i -th neuron in the l -th layer, σi
l  is the activation function, kl  

is the number of neurons in the l -th layer, wji
l  is the weight and 

bi
l  is the deviation. The training of BP neural network indicates 

constantly adjusting the weights and deviations to minimize the 
differences between the output value and the true value.

The structure of the BP neural network prediction model for the 
shear strength is plotted in Figure 3. The micro parameters are 
placed in the input layer and the shear strengths are placed in 
the output layer. It is noticed that only the micro parameters in 
terms of the particle contact model is involved in the BP neural 
network. Although some other micro parameters, e.g. the 
particle radius and the particle density, and the particle packing 
pattern have been verified to influence the macro mechanical 
properties of geotechnical materials in the numerical model 
[31], their effect is ignored in this study. The reason is that the 
particle radius and the particle density will be constant when 
the numerical model of the slope has been established, and all 
particles are prescribed to be close-packed in MatDEM.

Figure 3. BP neural network prediction model for the shear strength

 Considering that an ultimate aim of this study is to acquire the 
micro parameters corresponding to the original and reduced 
shear strength, the established BP neural network seems 
unfavorable. The reasons are explained as follows. If placing the 
micro parameters in the output layer and the shear strengths in 
the input layer, the output layer have more neurons than the 
input layer, which forms an underdetermined mathematical 
problem. In this situation, the BP neural network is possible to 
result in a result of low precision. For example, to calibrate 
micro particle parameters for Particle Flow Code (PFC) 
modeling, a BP neural network was built by placing three macro 
geotechnical mechanical parameters in the input layer and four 
micro parameters in the output layer [35]. Although the BP 
neural network database consists of four hundred samples, 
results of some testing samples were still unsatisfactory. Thus, 
the micro parameters and the shear strengths are placed in the 
input layer and the output layer respectively, to promise the 
validity of the BP neural network. Base on the BP neural 
network predict model of the shear strength, a calibration of 
the micro particle parameters will be developed similar to the 
work in [34].

3.2 Virtual 3D direct shear tests to measure the 
shear strength

The direct shear test and the triaxial compression test are two 
commonly used tests to measure the shear strength of 
geotechnical materials in laboratory, and their virtual 
counterparts have been established in DEM simulation by 
researchers [30,44]. Under the same micro parameter 
conditions, the two virtual tests are possible to result in 
different values of the shear strength [44]. Considering that the 
shear strength of geotechnical materials in the latter case study 
is obtained by using direct shear test, virtual 3D direct shear 
test is used to measure the shear strength in this study.

As shows in Figure 4, the virtual 3D direct shear test model 
consists of two parts, the specimen and the shear box. The 
specimen is composed of 7636 spherical particles, whose 
radiuses vary from 0.83 mm to 1.20 mm. The radius of the 
specimen is 30 mm and the height is 20 mm. The shear box 
consists of 7374 walls. To simulate the shearing process, the 
imposed boundary conditions are the horizontal velocity of the 
lower box and the normal pressure on the top wall. By 
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prescribing the horizontal displacement of the lower box in each 
time step to be 0.05 mm, the shear stress was recorded until 
the specimen was finally damaged.

Figure 4. Virtual 3D direct shear test model for measuring the shear strength of 
particle aggregate

 Given the micro particle parameters as Kn = 5.0 × 106 N/mm, 
Ks = 1.0 × 106 N/mm, Xb = 1.0 × 10−5 m, Fs 0 = 1.0 × 106 Pa and 
μp = 0.20, four normal pressures, 100 kPa, 200kPa, 300kPa and 
400 kPa, are applied on the top wall to perform the virtual 3D 
direct shear test. The shear stress−shear displacement curves 
under the four normal pressures are plotted in Figure 5a. The 
trend of the four curves is consistent with each other. The 
increasing of the imposed normal pressures induces a higher 
peak value of the shear stress, and the shear displacement 
where the shear stress reaches its peak value increases slightly, 
which is similar to the result of the previous virtual direct shear 
test [44]. The Coulomb formula

τ = C + σ tanφ (15)

is employed to determine the shear strength of the particle 
aggregate as shown in Figure 5b. Finally, the friction angle φ  is 
32.4°, and the cohesion C  is 76 kPa.

(a) Shear stress−shear displacement curves

(b) Determination of the shear strengths

Figure 5. Virtual 3D direct shear test model for the shear strength measurement

3.3 A correction calibration of micro particle 
parameters based on the BP neural network

Based on the previous studies on the influence of the micro 
particle parameters in MatDEM on the mechanical properties of 
the particle aggregate [39], four levels are considered for Fs 0 
and μp , and three levels are considered for Kn , Ks  and Xb  when 
establishing the BP neural network database. Table 1 lists the 
level values of micro particle parameters. By using the full 
orthogonal combination, 432 combinations of micro particle 
parameters are generated. And then, the virtual 3D direct shear 
test is executed to obtain their corresponding shear strengths. 
Finally, the BP neural network database is composed by 432 
groups of micro particle parameters and the corresponding 
shear strengths.

Table 1. The level values of micro particle parameters to establish the neural network 
database

Ks  (N/m) Kn  (N/m) Fs 0 (Pa) μp Xb  (m)
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1.0×105, 1.0×106, 
1.0×107

5.0×105, 5.0×106, 
5.0×107

1.0×105, 5.0×105, 
1.0×106, 5.0×106

0.10,0.20,
0.30,0.40

1.0×10−6, 1.0×10−5, 
1.0×10−4

The training of the BP neural network actually successfully 
establishes the mapping relationship between the micro 
particle parameters in the input layer and the shear strengths in 
the output layer, which can be denoted as the following 
formula.

(C , tanφ ) = f (Kn , Ks , Xb , Fs 0, μp ) (16)

 Assuming that the shear strengths (outputs) are continuous in 
the micro particle parameter space, the micro particle 
parameters (inputs) corresponding to the target shear 
strengths could be resolved similarly to the resolution of the 
nonlinear equations, because the gradient at any given input 
could be computed in the BP neural network. In the first place, 
an objective function is defined as

Error = ( C − C∗

C∗ )2
+ ( tanφ − tanφ∗

tanφ∗ )2
(17)

where C∗ and φ∗ are the target cohesion and the target friction 
angle, respectively. And then, the gradient descent method is 
used to adjust the inputs until the objective function have a 
value smaller than the prescribed threshold value. For a 
simplicity expression, the input (Kn , Ks , Xb , Fs 0, μp ) is denoted by 
X , the output (C , tanφ ) is denoted by Y , and thus Eq. (16) can 
be written as Y = f (X ). The resolution process is explained as 
follows:

(1) Determine the initial exploration input X0 by using the K-
means clustering analysis [45]. K-means clustering is a vector 
quantization method originally from signal processing and can 
partition n  observations into k  clusters where each observation 
belongs to the cluster with the nearest mean. The samples in 
the neural network database are partitioned into k  clusters by 
using K-means clustering analysis. K is takens as 15 in this 
study. Distances between the cluster centers and the target are 
computed by Eq. (17), and the nearest cluster center is selected 
as X0.

(2) Calculate the response outputs Yi  for the exploration point 
of Xi  at step i , and then invoke the objective function. When the 
objective function has a value smaller than the threshold value, 
the resolution is terminated and X  takes the value of Xi . If not, 
continue to perform step (3).

(3) Calculate the gradient of the objective function at Xi , and 
update X  along the descent direction of the objective function. 
The formulation to update X  is

ΔX = − η ∂(Error )
∂X |X =Xi

, Xi +1 = Xi + ΔX (18)

in which ΔX  is the increment used to update Xi  and η  is the 
step length. ΔX  is obtained by multiplying the negative gradient 
of the objective function by η . On account of the nonlinearity of 
forward propagation rule, η  is introduced for performing a step 
search approximation along the error gradient descent 
direction.

(4) Let i = i + 1 and return to step (2).

Forward propagation of the established BP neural network can 
be regarded as a substitution of the virtual 3D direct shear test. 
The samples in the neural network database are always finite, 
which indicates that the substitution is certain to be 
approximate. Therefore, the inputs obtained from the 

mathematical resolution may have a low accuracy. An additional 
step called as “verifying test” is used to determine whether the 
inputs are acceptable. The verifying test performs virtual 3D 
direct shear test by using the inputs obtained from the 
mathematical resolution, and calculates the error between the 
resulted shear strength and the target by using Eq. (17). If the 
objective function has a value smaller than the threshold value, 
the inputs are acceptable. Otherwise, a correction should be 
introduced for obtain a more reasonable input.

The failure of the verifying test indicates that the current BP 
neural network is still not accurate enough to obtain a fine 
mathematical resolution. A feasible strategy to improve the 
precision of BP neural network is adding some new samples to 
the database. Although the current BP neural network is not 
accurate enough, it provides a rough search direction for the 
resolution and the inputs resulted by the last round of the 
mathematical resolution must be a bit closer to the optimal 
solution than the initial inputs. Considering that, a new sample 
consisting of the resulted inputs in the last round and the 
corresponding shear strength is added to the database, and 
then the neural network is retrained. After the retraining of the 
BP neural network, the mapping relationship in Eq. (16) has 
been replaced by a new relationship. Then, the mathematical 
resolution is executed again by selecting the resulted inputs in 
the last round as the initial exploration input, and the verifying 
test is performed again. The “mathematical resolution−verifying 
test−neural network correction” flow is repeated till the 
objective function has a value smaller than the threshold value 
in verifying test. The entire flow of the correction method to 
calibrate the micro particle parameters is plotted in Figure 6 .

Figure 6. The entire flow of the correction method to calibrate the micro particle 
parameters

3.5 Validity of the proposed correction 
calibration
To verify the validity of the proposed calibration method, four 
different target shear strengths are given, and the optimal 
micro particle parameters are searched by prescribing the 
threshold value as 2.0 × 10−4 for Eq. (17). After three or four 
rounds of mathematical resolution, the resulted micro particle 
parameters passed the verifying test. Table 2 lists the micro 
parameters provided by the mathematical resolution and the 
shear strengths provided by the verifying test in each round.

Table 2. Micro particle parameters and shear strengths in each round

Target shear 
strength Round Kn  

(N/m)
Ks  

(N/m)
Xb  (m) Fs 0 (Pa) μp C  (kPa) φ (o )

C∗=30.0 kPa
 φ∗=19.6o

1 0.27×107 5.27×106 1.95×10−51.25×105 0.320 21.7 30.2

2 0.47×107 1.84×106 2.72×10−53.67×105 0.220 28.4 22.8

3 2.03×107 2.32×106 1.84×10−56.42×105 0.143 29.5 18.9

4 1.27×107 2.09×106 2.04×10−55.95×105 0.141 30.2 19.6

C∗=28.5 kPa
 φ∗=18.6o

1 2.15×107 4.92×106 2.36×10−53.29×105 0.114 26.3 16.7

2 1.63×107 4.40×106 2.02×10−53.17×105 0.127 29.2 17.9

3 2.38×107 4.75×106 1.61×10−54.52×105 0.129 28.6 18.5

1 4.03×107 3.82×106 5.25×10−52.07×105 0.324 48.9 31.5
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C∗=45.0 kPa
 φ∗=28.0o

2 2.94×107 4.43×106 3.85×10−52.18×105 0.296 45.7 29.7

3 3.16×107 5.26×106 4.19×10−51.95×105 0.268 45.3 28.9

4 3.25×107 4.47×106 4.37×10−52.23×105 0.272 44.8 27.8

C∗=12.0 kPa
 φ∗=33.0o

1 3.27×107 4.13×106 1.74×10−52.95×105 0.330 18.5 30.5

2 3.65×107 3.29×106 1.86×10−53.20×105 0.306 16.1 28.5

3 2.45×107 2.94×106 1.66×10−52.41×105 0.358 14.3 32.0

4 2.36×107 3.15×106 1.57×10−52.46×105 0.379 11.9 33.2

Results in Table 2 shows that Error  in Eq. (17) decreases whith 
the mathematical resolution round increasing, which implies 
that the target shear strengths are approximated gradually. 
Taking the case C∗=30.0 kPa, φ∗ = 19.6o  as an example, the 
relative errors of the resulted shear strengths are respectively 
27.7% and 63.5% for the cohesion and the friction coefficient in 
the first round, by using the target shear strengths as the 
reference. In the second round, they decrease to 5.3% and 
18.1% for the cohesion and the friction coefficient, respectively. 
Ultimately, they decrease to 0.7% and 0.2% in the fourth round 
for the cohesion and the friction coefficient, respectively. Thus, 
the proposed method has the ability to obtain the micro particle 
parameters that well reflects the shear strengths of particle 
assembly.

When performing the slope stability analysis by applying SRM in 
MatDEM, the shear strengths of the geological material in the 
MatDEM modeling are constantly adjusted. Once a new value of 
the shear strengths is given, a new combination of micro 
particle parameters is to be searched. At the moment, the 
established neural network database will provide a new initial 
exploration input X0 by using the K-means clustering analysis, 
and then the proposed method is performed to obtain the 
micro particle parameters.

4. An energy criterion to evaluate the slope 
stability

As mentioned in Section 2.2, the MatDEM modeling follows the 
law of energy conversation and Newton’s law of motion. When 
slope instability happens, the displacements of soil and rock will 
induce the conversion between various kinds of energies. 
Consequently, the energy conversion of an instable slope in 
MatDEM must be different with that of a stable slope. In this 
section, a simple 2D slope is taken as an example to investigate 
the energy conversion difference between the stable and 
instable slope. And then, an energy criterion is established to 
evaluate the slope stability.

4.1 Investigation on the energy conversion 
difference between the stable and instable 
slope

As shows in Figure 7, the slope is 7 m height and the ratio of 
slope is 7: 3. And, the slope is assumed to be homogeneous and 
composed by one kind of geotechnical material for simplicity. 
The MatDEM model of the slope contains 6305 particles. The 
radius of particles varies from 0.064 m to 0.096 m. The density is 
taken as 2.04×103 kg/m3, and the gravity acceleration g = 9.8 
m/s2. All particles at the left, right and bottom boundaries are 
fixed as the boundary conditions of the model.

 In the numerical simulation of the slope model, three groups of 
micro particle parameters listed in Table 3 are selected, which 
are denoted as Case 1, 2 and 3 respectively. Considering that 
the chief purpose here is to reveal the energy conversion 
difference between the stable and instable slope, the shear 

Figure 7. A simple homogeneous slope 2D model

strengths are not measured for the three groups of micro 
particle parameters by using the virtual numerical test.

Table 3. Micro particle parameters to be used in the investigation of energy conversion

Parameter Kn  (N/m) Ks  (N/m) Xb  (m) Fs 0 (Pa) μp

Case 1 7.80×106 3.10×106 1.10×10−4 5.46×105 0.020

Case 2 2.80×108 1.50×108 2.60×10−5 4.90×105 0.120

Case 3 9.60×107 2.80×107 9.30×10−6 3.90×105 0.309

After 10 time steps of the computation, the slope is verified to 
be instable in Case 1 but stable in Case 2 and 3. It is noticed that 
one time step in MatDEM consists of a number of sub-time 
steps, and the value of a sub-time step is self-determined by the 
software. In the computation of the slope model, one time step 
is composed of 63 sub-time steps, and a sub-time step takes 
0.0001s , 0.00015s  and 0.0002s  for Case 1, Case 2 and Case 3, 
respectively. The displacement cloud charts are plotted in Figure 
8a and Figure 9a for Case 1 and Case 2, respectively. The 
displacement cloud chart of Case 3 is not provided because the 
displacement difference between Case 2 and Case 3 is not 
noticeable. Figure 8b and Figure 9b illustrate the variations of 
the total energy, elastic potential energy, kinetic energy, 
gravitational potential energy and heat with the time steps for 
Case 1 and Case 2, respectively. Some interesting phenomena 
are observed in the energy-time steps curves, and a further 
investigation is valuable for the establishment of an energy 
criterion to evaluate the slope stability.
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(a) Displacement cloud chart

(b) Energy variations with time step

Figure 8. Displacements and the energy conversion for the slope in Case 1

(a) Displacement cloud chart

(b) Energy variations with time step

Figure 9. Displacements and the energy conversion for the slope in Case 2

 Firstly, the conclusion that MatDEM follows the law of energy 
conversation is confirmed again by the energy-time steps 
curves. For both two cases, the total energies are almost 
constant during the computation, no matter whether the slope 
is stable or not. However, the total energy of Case 2 has a larger 
value than that of Case 1, which can be explained as follows. In 
the MatDEM modeling, the gravitational potential energy is 
evaluated by the relative vertical displacement of particles. It is 
initialized to be zero for a particle, and becomes negative when 
the particle falls while positive when the particle rises. The 
kinetic energy is zero for a particle unless the motion of the 
particle happens. The heat induced by the viscous damping, the 
spring breaking and the friction is zero in the initial state. 
Therefore, the total energy should be equal to the elastic 
potential energy initially. Since the elastic potential energy is 
computed as Eq. (4), Kn  and Ks  dominate the value of the elastic 
potential energy. Because the values of Kn  and Ks  in Case 2 is 
greater than that in Case 1, the total energy of Case 2 has a 
larger value than that of Case 1.

Secondly, the variations of the kinetic energy and the 
gravitational potential energy in Figure 8b and Figure 9b are 
apparently different. With the time step increasing, the kinetic 
energy increases but the gravitational potential energy 
decreases in Figure 8b. But, the gravitational potential energy 
and the kinetic energy are nearly constant in Figure 9b. Figure 
10 plots the variations of the kinetic energy and the 
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gravitational potential energy with time steps for all three cases.

(a) Kinetic energy

(b) Gravitational potential energy

Figure 10. Variations of the kinetic energy and the gravitational potential energy 
with time steps for all three cases

 For Case 3, the kinetic energy is observed, and the gravitational 
potential energy is positive. That may be caused by the slope 
deformation. The kinetic energy and the gravitational potential 
energy caused by the deformation can be easily distinguished 
from that caused by the failure. Above all, the magnitude of the 
energy induced by the deformation is tiny compared to that 
induced by the failure. For Case 3, the kinetic energy and the 
gravitational potential energy have peak values of 2800 J and 
4700 J, respectively. For Case 2, they have peak values of 116 J 
and 945 J, respectively. Next, when the two energies are caused 
by deformation, their variations show the convergent trend. 
But, when the two energies are induced by the failure, their 
variations show the divergent trend. Since the clear difference 
in the variation of the kinetic energy and the gravitational 
potential energy can be observed between a stable slope and 
an instable slope, they have the potential to be used in the 
evaluation of the slope stability.

Finally, the heat is investigated. The variations of heat are 
illegible in Figure 8b and Figure 9b because the magnitude of 
heat is too small. Figure 11a plots the variations of the heat with 
time steps for all three cases. Obviously, the heats in Case 2 and 
Case 3 are much greater than that in Case 1. But it is incorrect 
to have a conclusion that the heat in a stable MatDEM slope 
model is more than that in an instable MatDEM slope model. 
The heat in the system is composed of the contributions of the 
viscous damping, the spring breaking and the friction force, in 
which the latter two sources are calculated based on the micro 
particle parameters. In Figure 11a, the heat curve for Case 1 is 
situated in the lowest position, which maybe resulted by the 
micro particle parameters in Table 3. Thus, the magnitude of 
the heat is unreasonable to be chosen as a reference in the 
slope stability assessment. But, the shapes of the three heat 
curves are quite different. For a better demonstration, the heat 
curve is repainted for Case 1 in Figure 11b. The heat curves of 
Case 2 and Case 3 are roughly convex, but the heat curve of 
Case 1 is concave. If the slope is stable, the position change of 
the particles induced by the deformation will stop rapidly, which 
promises the heat to be stable after several time steps. If the 
slope is sliding, the positions of the particles are still 
continuously changed, which results in the on-going increasing 
of the heat. Therefore, the shape of the heat curve may be 
effective in the evaluation of the slope stability.
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(a) Three cases

(b) Case 1

Figure 11. Variations of the heat with time steps [68]

4.2 A criterion based on the kinetic energy of 
the MatDEM model
As mentioned in the Section 4.1, the variation of the kinetic 
energy and the gravitational potential energy and the shape of 
the heat curve are verified to be different between a stable 
slope and an instable slope when performing the simulation by 
MatDEM. Their validities are compared in this section from a 
view of practical application.

When performing the slope stability analysis by using SRM in 
MatDEM, the micro parameters of the particles will be modified 
according to the reduction factor. Both the gravitational 
potential energy and the kinetic energy are independent of the 
micro particle parameters. However, the heat is calculated 
based on the micro particle parameters. When the energy 
variations resulted by using different micro particle parameters 
are collected together, it is more suitable to compare the results 
of the gravitational potential energy and the kinetic energy than 
that of the heat. Additionally, the number of the time steps has 

a great influence on the reliability of the conclusion if 
estimating the stable state of a slope by using the shape of the 
heat curves. As shows in Figure 11a, the overall trend of the 
heat curve is convergent for Case 2, while a slight turning 
happens at the sixth time step. A large number of time steps 
seem to be feasible to overcome the effect of the local 
abnormality, but it will cause another issue. In fact, the heat 
curve must be convergent ultimately no matter whether the 
slope is stable or not. In case of an instable slope, the position 
of the particles will be relocated finally when the sliding is 
terminated, and thus the heat will be also stable. Therefore, an 
incorrect conclusion may be drawn based on the shape of the 
heat curve when the number of time steps is inappropriate. In 
short, the gravitational potential energy and the kinetic energy 
are more suitable to be compared than the heat when 
estimating the stable state of a slope.

There is an essential association between the gravitational 
potential energy and the kinetic energy. The motion of the 
particles results in the change of their positions, so the kinetic 
energy always emerges before the gravitational potential 
energy in MatDEM. This deduction can be verified by the 
variations of the kinetic energy and the gravitational potential 
energy for Case 3. As shown in Figure 10 , for Case 3 it is the 
fourth time step that the kinetic energy begins to decrease, 
while it is the seventh time step that the gravitational potential 
energy begins to decrease. This phenomenon indicates that the 
convergence of the kinetic energy should be earlier than that of 
the gravitational potential energy for a stable slope. Moreover, 
the variation of the gravitational potential energy is noticed to 
be small when the time step ranges from four to seven for Case 
1. The reason is that the motion of the particles in the model 
maybe temporarily dominated by the horizontal motion during 
the failure, but only the vertical motion of the particles induces 
the variation of the gravitational potential energy. Thus, the 
gravitational potential energy may have a more complicated 
curve than the kinetic energy. Based on the above analysis, the 
kinetic energy is taken as the main reference to estimate the 
stable state of a slope.

When performing the slope stability analysis by using SRM in 
MatDEM, the variations of the kinetic energy are collected under 
different reduction factors. Then, the variation tendencies and 
the magnitude of the kinetic energies are compared. The abrupt 
in the variation tendencies and the magnitude is considered as 
a sign for the emergence of the critical point, and the safe 
factor of the slope is determined finally. At this point, a criterion 
has been proposed to evaluate the slope stability based on the 
kinetic energy.

5. Case study: Baijiabao landslide

5.1 Geological background

Baijiabao landslide is situated in Guizhou village of Zigui County, 
Hubei Province of China on the right bank of the Xiangxi River 
(30o58′59.9′′N, 110o45′33.4′′E). A photograph of the landslide 
that was taken from the opposite bank of the Xiangxi River is 
shown in Figure 12. The elevation of the landslide ranges from 
125 m to 265 m above MSL, and the slope of the landslide 
ranges from 10o to 20o. The upper boundary of the landslide is 
defined by the interface between the bedrock and the soil. The 
left and right boundaries are defined by two natural gullies that 
contain many surface cracks. The toe of the landslide varies in 
elevation between 125 m to 135 m. The primary sliding 
direction of Baijiabao landslide varies between 75o and 85o (SW-
NE). This landslide is 550 m long and 400 m wide, covers an area 
of 20 ha, and has an estimated volume of nearly 1 million m3. 
The landslide mass is primarily composed of loose Quaternary 
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deposits. Its sliding zone is mainly silty clay. And the underlying 
bedrock contains quartz sandstone and argillaceous siltstone of 
the Early Jurassic Xiangxi Formation, which dips into the hill at 
an angle of 30o to 40o (Figure 13).

Figure 12. A photograph of Baijiabao landslide, taken from the opposite bank of the 
Xiangxi River

(a) Engineering geological map

(b) Geological cross-section

Figure 13. Geological background of Baijiabao landslide [46]

 Baijiabao landslide poses significant threats to public safety. The 
Zi-Xing road crosses the central part of the landslide mass as 

Figure 13a shows. Before Three Gorges Reservoir (TGR) 
impoundment, 165 residents lived in the landslide area, while 
only 20 residents live there today. The deformation rate of the 
landslide was observed to increase significantly after TGR 
impoundment. Monitoring system installed in October 2006 
consists of four GPS monitoring sites, which are noted as 
ZG323, ZG324, ZG325 and ZG326 in Figure 13a. The detailed 
deformation history of Baijiabao landslide can be referred to the 
related literatures [46-48].

5.2 Landslide model in the MatDEM modeling

This subsection describes the establishment of the 3D MatDEM 
model for the stability analysis of Baijiabao landslide. Firstly, the 
geomorphy of the landslide is simulated by using ArcGIS 
software based on the contour line measured in 2006 (Figure 
14a). Then, a 3D model of Baijiabao landslide is built in MatDEM. 
The model is 564 m long, 497 m wide and 186 m height, 
covering the whole landslide mass (Figure 14b). Next, 
geotechnical materials are allocated according to the 
engineering geologic investigation data. The sliding zone in the 
model (Figure 14c) is positioned by using the interpolation of 
locations where the sliding zone is encountered in the drilling 
exploration. The landslide mass has a thickness varying 
between 20 m to 30 m in the front area, and has a thickness 
varying between 10 m to 40 m in the trailing area.
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(a) Geomorphy model

(b) 3D MatDEM model

(c) An enlargement to exhibit the sliding zone

Figure 14. 3D MatDEM model for the stability analysis of Baijiabao landslide

 Finally, the 3D MatDEM model of Baijiabao landslide is 
composed by 1,207,985 particles, in which the landslide mass 
and the sliding zone are represented by 733,104 removable 
particles, and the bedrock is represented by 474,881 fixed 
particles. The radius of particles varies between 0.55 m and 0.83 
m. In Figure 14c, the landslide mass, the sliding zone and the 
bedrock are presented as brown particles, green particles and 
blue particles, respectively.

5.3 Mechanical parameters and micro particle 
parameters

According to the report of engineering geological exploration, 
the unit weight and shear strengths are listed in Table 4 for the 

geotechnical materials in the landslide mass, the sliding zone 
and the bedrock, respectively. All parameters are measured in 
the native state, and taken their statistical mean value. It is 
noticed that the stability of Baijiabao landslide is actually 
affected by the rainfall and the reservoir water fluctuation. In 
view that the main purpose of this study is to improve the ability 
of MatDEM in 3D slope stability evaluation, the rainfall and the 
reservoir water fluctuation are ignored temporarily.

Table 4. Unit weight and shear strengths of geotechincal materials in different regions

Region Unit weight γ  (kN/m3) C  (kPa) φ  (o)
Landslide mass 18.0 17.1 20.2

Sliding zone 20.5 24.6 15.2
Bedrock 26.0 1,200 32.1

Using the BP neural network-based calibration method 
established in Section 3, micro parameters of particles 
representing various geotechnical materials are obtained and 
listed in Table 5. Because the particles have a much larger 
radius than the particles used in Section 3, the size of the virtual 
3D direct shear test model is adjusted. Previous studies [21,49] 
verified the effect of the particle size on the macro properties in 
DEM modeling, and declared that the ratio L /R  is a critical 
variable to be carefully selected when performing virtual 
strength test. Here L  is the size of the strength test model, and 
R  denotes the average radius of particles. According to Su’s 
suggestion [49], L /R  should be more than 200 to avoid the 
effect of the particle size on the macro properties of the particle 
assembly in DEM. Finally, the specimen to be used in virtual 3D 
direct shear test has a radius of 21 m and a height of 14 m.

Table 5. Resulted micro particle parameters and corresponding shear strangths

Region Kn  (N/m) Ks  (N/m) Xb  (m) Fs 0 (Pa) μp C  (kPa) φ  (o)

Landslide mass 3.27×107 5.27×106 1.95×10−5 1.25×105 0.220 17.0 20.2

Sliding zone 2.49×107 1.84×106 2.72×10−5 3.67×105 0.120 24.6 15.2

Bedrock 4.27×107 2.09×106 2.04×10−5 5.95×105 0.441 37.5 32.0

With respect to the bedrock, the micro particle parameters in 
Table 5 resulted in the shear strengths different to the actual 
shear strengths in Table 4. The reason is that it is hard to 
represent the three geotechnical materials by using micro 
parameters of the same order of magnitude. The cohesion of 
the bedrock is nearly 100 times that of the landslide mass and 
the sliding zone. Because all the particles representing the 
bedrock are fixed in the model, the difference between the 
cohesion of the bedrock in Table 4 and that in Table 5 will have 
little influence on the computation. Moreover, to reduce the 
workload, the micro particle parameters of the bedrock will not 
be changed when the stability of the landslide is evaluated by 
using SRM.

5.4 Computational results

As concluded in Section 4, the abrupt in the variation tendencies 
and the magnitude of the kinetic energy can be utilized to 
determine the FOS when estimating the slope stability by using 
SRM in MatDEM. Under different reduction factors, the 
variations of the kinetic energy with time steps are recorded for 
the landslide model and plotted in Figure 15. The kinetic energy 
curve resulted by a greater reduction factor always has a higher 
situation in Figure 15. But, if the reduction factor is less than 
1.06, the difference in the magnitude of the kinetic energy 
between different reduction factors is relatively small at each 
time step. When the reduction factor is increasing from 1.06 to 
1.07, the magnitude difference has a dramatically increasing. 
Meanwhile, the kinetic energy curves present a convergent 
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trend when the reduction factor is less than 1.06, but present a 
divergent trend when the reduction factor arrives at 1.07. Thus, 
the FOS of Baijiabao landslide is considered as 1.06.

Figure 15. Variation of kinetic energy with time steps under different reduction 
factors

 By using the proposed BP neural network-based calibration 
method, the micro particle parameters are constantly adjusted 
during the computation. Table 6 lists the micro particle 
parameters and the shear strengths under different reduction 
factors.

Table 6. Micro particle parameters and corresponding shear strangths under different 
reduction factors

Region FOS Kn  (N/m) Ks  (N/m) Xb  (m) Fs 0 (Pa) μp C  (kPa) φ  (o)

Landslide mass

1.00 3.27×107 5.27×106 1.95×10−5 1.25×105 0.220 17.0 20.2

1.10 3.35×107 4.89×106 1.61×10−5 1.03×105 0.175 15.5 18.5

1.03 3.29×107 5.13×106 1.86×10−5 1.18×105 0.207 16.5 19.7

1.04 3.18×107 4.97×106 1.82×10−5 1.16×105 0.202 16.3 19.5

1.05 3.22×107 5.05×106 1.77×10−5 1.14×105 0.198 16.2 19.3

1.06 3.53×107 5.02×106 1.75×10−5 1.12×105 0.194 16.0 19.1

1.07 3.43×107 4.95×106 1.71×10−5 1.09×105 0.190 15.9 19.0

Sliding zone

1.00 2.49×107 1.84×106 2.72×10−5 3.67×105 0.120 24.6 15.2

1.10 2.45×107 1.81×106 2.36×10−5 3.05×105 0.098 22.4 13.9

1.03 2.69×107 1.86×106 2.61×10−5 3.48×105 0.113 23.9 14.8

1.04 2.38×107 1.83×106 2.57×10−5 3.42×105 0.111 23.7 14.6

1.05 2.33×107 1.96×106 2.54×10−5 3.36×105 0.109 23.4 14.5

1.06 2.41×107 1.92×106 2.50×10−5 3.29×105 0.107 23.2 14.4

1.07 2.46×107 1.87×106 2.47×10−5 3.23×105 0.104 23.0 14.2

Figure 16 illustrates the final displacement of Baijiabao landslide 
model when the reduction factor is taken as 1.06. Some 
particles in the front area of the model have the displacements 
of nearly 60 m, and most particles have the displacements less 
than 10 m. Thus, the FOS determined by the abrupt in the 
variation tendencies and the kinetic energy magnitude in fact 
reveals the landslide stability at the global level. The 
displacements when the landslide is close to its limit equilibrium 
state may be valuable in the landslide failure prediction. The 
field data [46] verified that at the monitoring period from 
January 2007 to December 2019, the ZG326 site (Figure 13a) in 
the middle area of Baijiabao landslide recorded the max 
cumulative displacement of 1.8 m. Its displacements are still 

observed when the reservoir water level changes and the 
rainfall happen, while Baijiabao landslide hasn’t slipped entirely 
till now. Therefore, the surface movements before its failure are 
uncertain. In views that this study aims to establish a micro 
particle parameter calibration method and a criterion for the 
application of SRM in MatDEM to analysis 3D slope stability, the 
influence of the reservoir water and the rainfall on the stability 
of Baijiabao landslide is left out of consideration. Hence, the 
displacements in the limit equilibrium state obtained in this 
study are not suitable for the failure prediction for Baijiabao 
landslide.

Figure 16. The displacement of Baijiabao landslide model with the reduction factor 
1.06

6. Conclusions
By taking MatDEM as an example, a calibration method based 
on BP neural network is proposed to acquire the micro particle 
parameters corresponding to the given shear strengths in this 
paper, and an energy criterion is proposed for determining the 
FOS of the slope when applying SRM in DEM. And the proposed 
enhancements are applied in the 3D stability analysis of 
Baijiabao landslide. The following conclusions can be made:

(1) BP neural network can well represent the complicated 
relationship between the micro particle parameters and the 
shear strengths of the particle aggregate in MatDEM. And the 
proposed BP neural network-based micro particle parameters 
calibration method is applicable to provide the micro particle 
parameters when the shear strength is constantly reduced.

(2) The variations of the kinetic energy, the gravitational 
potential energy and the heat are noticed to be quite different 
between the stable and instable slope. However, the abrupt in 
the variation tendency and the magnitude of the kinetic energy 
is more suitable for determining the FOS of the slope.

(3) When determining the FOS by using the kinetic energy 
criterion, the displacements of particles in the slope model are 
permitted, so the FOS actually reveals the slope stability at the 
global level.

Acknowledgments

The work is supported by the Open Research Programme of the 
Hubei Key Laboratory of Disaster Prevention and Mitigation 
(China Three Gorges University) (no. 2022KJZ07), the Open 
Research Fund of Key Laboratory of Geological Hazards on 
Three Gorges Reservoir Area of Ministry of Education 
(2020KDZ10), National Natural Science Funds (Project No. 
52079070), and the Open Research Fund of State Key 

https://www.scipedia.com/public/File:Review_852894090255-image42.png
https://www.scipedia.com/public/File:Review_852894090255-image42.png
https://www.scipedia.com/public/File:Review_852894090255-image43-c.png
https://www.scipedia.com/public/File:Review_852894090255-image43-c.png


https://www.scipedia.com/public/Jiang_et_al_2022b 14

W. Jiang, Y. Tan, J. Yan, Y. Ouyang, Z. Fu and Q. Feng, A BP neural network-based micro particle parameters 
calibration and an energy criterion for the application of strength reduction method in MatDEM to evaluate 3D slope 
stability, Rev. int. métodos numér. cálc. diseño ing. (2023). Vol. 39, (1), 3

Laboratory of Simulation and Regulation of Water Cycle in River 
Basin (China Institute of Water Resources and Hydropower 
Research), Grant NO：IWHR-SKL-202020.

References
[1] Sun G., Jiang W., Cheng S., Zheng H. Optimization model for determining safety factor 
and thrust line in landslide assessments. International Journal of Geomechanics, 
17(4):04016091, 2017.

[2] Deng D.P., Li L., Zhao L.H. LEM for stability analysis of 3D slopes with general-shaped slip 
surfaces. International Journal of Geomechanics, 17(10):06017017, 2017.

[3] Firincioglu B.S., Ercanoglu M. Insights and perspectives into the limit equilibrium method 
from 2D and 3D analyses. Engineering Geology, 281:105968, 2021.

[4] Lv Q., Liu Y., Yang Q. Stability analysis of earthquake-induced rock slope based on back 
analysis of shear strength parameters of rock mass. Engineering Geology, 228:39-49, 2017.

[5] Zheng H., Sun G., Liu D. A practical procedure for searching critical slip surfaces of slopes 
based on the strength reduction technique. Computers and Geotechnics, 36(1-2):1-5, 2009.

[6] Espada M., Muralha J., Lemos J.V., Jiang Q., Feng X.-T., Fan Q., Fan Y. Safety analysis of the 
left bank excavation slopes of Baihetan arch dam foundation using a discrete element 
model. Rock Mechanics and Rock Engineering, 51(8):2597-2615, 2018.

[7] Lu, Y., Tan, Y. and Li, X. Stability analyses on slopes of clay-rock mixtures using discrete 
element method. Engineering Geology, 244: 116-124, 2018.

[8] Nie Z., Zhang Z., Zheng H., Lin S. Stability analysis of landslides using BEM and variational 
inequality based contact model. Computers and Geotechnics, 123:103575, 2020.

[9] Sun G., Lin S., Zheng H., Tan Y., Sui T. The virtual element method strength reduction 
technique for the stability analysis of stony soil slopes. Computers and Geotechnics, 
119:103349, 2020.

[10] Xu D., Wu A., Yang Y., Lu B., Liu F., Zheng H. A new contact potential based three-
dimensional discontinuous deformation analysis method. International Journal of Rock 
Mechanics and Mining Sciences, 127:104206, 2020.

[11] Yang Y., Xia Y., Zheng H., Liu Z. Investigation of rock slope stability using a 3D nonlinear 
strength-reduction numerical manifold method. Engineering Geology, 292:106285, 2021.

[12] Wang B., Vardon P.J., Hicks M.A. Rainfall-induced slope collapse with coupled material 
point method. Engineering Geology, 239:1-12, 2018.

[13] Bui H.H., Fukagawa R., Sako K., Wells J.C. Slope stability analysis and discontinuous 
slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). 
Géotechnique, 61(7):565-574, 2011.

[14] He L., Tian Q., Zhao Z., Zhao X., Zhang Q., Zhao J. Rock Slope stability and stabilization 
analysis using the coupled DDA and FEM method: NDDA approach. International Journal of 
Geomechanics, 18(6):04018044, 2018.

[15] Sun L., Liu Q., Abdelaziz A., Tang X., Grasselli G. Simulating the entire progressive failure 
process of rock slopes using the combined finite-discrete element method. Computers and 
Geotechnics, 141:104557, 2022.

[16] Bao Y., Sun X., Chen J., Zhang W., Han X., Zhan J. Stability assessment and dynamic 
analysis of a large iron mine waste dump in Panzhihua, Sichuan, China. Environmental 
Earth Sciences, 78(2):48, 2019.

[17] Jiang M., Niu M., Zhang F., Wang H., Liao Z. Instability analysis of jointed rock slope 
subject to rainfall using DEM strength reduction technique. European Journal of 
Environmental and Civil Engineering, 26(10):4664-4686, 2021.

[18] Shi C., Yang B., Zhang Y., Yang J. Application of discrete-element numerical simulation 
for calculating the stability of dangerous rock mass: A case study. International Journal of 
Geomechanics, 20(12):04020231, 2020.

[19] Zienkiewicz O.C., Humpheson C., Lewis R.W. Associated and non-associated visco-
plasticity and plasticity in soil mechanics. Geotechnique, 25(4):671-689, 1975.

[20] Griffiths D.V., Lane P.A. Slope stability analysis by finite elements. Géotechnique, 
49(3):387-403, 1999.

[21] Yang B., Jiao Y., Lei S. A study on the effects of microparameters on macroproperties for 
specimens created by bonded particles. Engineering Computations, 23(6):607-631, 2006.

[22] Zhou Z.H., Wang H.N., Jiang M.J. Macro- and micro-mechanical relationship of the 
anisotropic behaviour of a bonded ellipsoidal particle assembly in the elastic stage. Acta 
Geotechnica, 16(12):3899-3921, 2021.

[23] Cheng Y., Wong L.N.Y. A study on mechanical properties and fracturing behavior of 
Carrara marble with the flat‐jointed model. International Journal for Numerical and 
Analytical Methods in Geomechanics, 44(6):803-822, 2020.

[24] Liu C., Pollard D.D., Shi B. Analytical solutions and numerical tests of elastic and failure 
behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical 
Research: Solid Earth, 118(1):71-82, 2013.

[25] Rackl M., Hanley K.J. A methodical calibration procedure for discrete element models. 
Powder Technology, 307:73-83, 2017.

[26] Hou J., Zhang M., Chen Q., Wang D., Javadi A., Zhang S. Failure-mode analysis of loose 
deposit slope in Ya’an-Kangding Expressway under seismic loading using particle flow code. 
Granular Matter, 21(1):8, 2019.

[27] Su H., Fu Z., Gao A., Wen Z. Numerical simulation of soil levee slope instability using 
particle-flow code method. Natural Hazards Review, 20(2):04019001, 2019.

[28] Xu G.J., Zhong K.Z., Fan J.W., Zhu Y.J., Zhang Y.Q. Stability analysis of cohesive soil 
embankment slope based on discrete element method. Journal of Central South University, 

27(7):1981-1991, 2020.

[29] Wang M., Cao P. Calibrating the micromechanical parameters of the PFC2D (3D) models 
using the improved simulated annealing algorithm. Mathematical Problems in Engineering, 
2017:6401835, 2017.

[30] Cheng H., Shuku T., Thoeni K., Yamamoto H. Probabilistic calibration of discrete 
element simulations using the sequential quasi-Monte Carlo filter. Granular Matter, 
20(1):11, 2018.

[31] Do H.Q., Aragón A.M., Schott D.L. A calibration framework for discrete element model 
parameters using genetic algorithms. Advanced Powder Technology, 29(6):1393-1403, 2018.

[32] Benvenuti L., Kloss C., Pirker S. Identification of DEM simulation parameters by Artificial 
Neural Networks and bulk experiments. Powder Technology, 291:456-465, 2016.

[33] He P., Fan Y., Pan B., Zhu Y., Liu J., Zhu D. Calibration and verification of dynamic particle 
flow parameters by the back-propagation neural network based on the genetic algorithm: 
recycled polyurethane powder. Materials, 12(20):3350, 2019.

[34] Ye F., Wheeler C., Chen B., Hu J., Chen K., Chen W. Calibration and verification of DEM 
parameters for dynamic particle flow conditions using a backpropagation neural network. 
Advanced Powder Technology, 30(2):292-301, 2019.

[35] Zhou, Y., Wu S., Jiao J., Zhang X. Research on mesomechanical parameters of rock and 
soil mass based on BP neural network. Rock Soil Mech, 32(12):3821-3826, 2011.

[36] Wang H., Zhang B., Mei G., Xu N. A statistics-based discrete element modeling method 
coupled with the strength reduction method for the stability analysis of jointed rock slopes. 
Engineering Geology, 264:105247, 2020.

[37] Deluzarche R., Cambou B. Discrete numerical modelling of rockfill dams. International 
Journal for Numerical and Analytical Methods in Geomechanics, 30(11):1075-1096, 2006.

[38] Shen H., Abbas S.M. Rock slope reliability analysis based on distinct element method 
and random set theory. International Journal of Rock Mechanics and Mining Sciences, 
61:15-22, 2013.

[39] Liu C., Xu Q., Shi B., Deng S., Zhu H. Mechanical properties and energy conversion of 3D 
close-packed lattice model for brittle rocks. Computers & Geosciences, 103:12-20, 2017.

[40] Liu Y., Zhang D., Wang G.-y., Liu C., Zhang Y. Discrete element method-based prediction 
of areas prone to buried hill-controlled earth fissures. Journal of Zhejiang University-
SCIENCE A, 20(10):794-803, 2019.

[41] Luo H., Xing A., Jin K., Xu S., Zhuang Y. Discrete element modeling of the Nayong rock 
avalanche, Guizhou, China constrained by dynamic parameters from seismic signal 
inversion. Rock Mechanics and Rock Engineering, 54(4):1629-1645, 2021.

[42] Scaringi G., Fan X., Xu Q., Liu C., Ouyang C., Domènech G., Yang F., Dai L. Some 
considerations on the use of numerical methods to simulate past landslides and possible 
new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides, 15(7):1359-
1375, 2018.

[43] Zhan Q., Wang S., Wang L., Guo F., Zhao D., Yan J. Analysis of failure models and 
deformation evolution process of geological hazards in Ganzhou city, China. Frontiers in 
Earth Science, 9:731447, 2021.

[44] Graziani A., Rossini C., Rotonda T. Characterization and DEM modeling of shear zones 
at a large dam foundation. International Journal of Geomechanics, 12(6):648-664, 2012.

[45] Peña J.M., Lozano J.A., Larrañaga P. An empirical comparison of four initialization 
methods for the K-Means algorithm. Pattern Recognition Letters, 20(10):1027-1040, 1999.

[46] Yao W.M., Li C.D., Guo Y.C., Criss R.E., Zuo Q.J., Zhan H.B. Short-term deformation 
characteristics, displacement prediction, and kinematic mechanism of Baijiabao landslide 
based on updated monitoring data. Bulletin of Engineering Geology and the Environment, 
81(9):393, 2022.

[47] Xu S.L., Niu R.Q. Displacement prediction of Baijiabao landslide based on empirical 
mode decomposition and long short-term memory neural network in Three Gorges area, 
China. Computers & Geosciences, 111:87-96, 2018.

[48] Yao W.M., Li C.D., Zuo Q.J., Zhan H.B., Criss R.E. Spatiotemporal deformation 
characteristics and triggering factors of Baijiabao landslide in Three Gorges Reservoir 
region, China. Geomorphology, 343:34-47, 2019.
 [49] Su, H., Yang J., Hu B., Gao X., Ma H. Study of particle size effect of rock model based on 
particle discrete element method. Rock and Soil Mechanics, 39(12):4642-4650, 2018.


