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Abstract
Non-uniform cooling of steel cross-sections during the manufacturing process generates a 
state of residual stresses in the cross-section. Design codes describe the distribution of 
these stresses in different ways. This work aims to numerically investigate the influence of 
these models on the behavior of bare steel and steel-concrete composite sections by the 
curves: flexural stiffness-bending moment, moment-curvature and yield curves (initial and 
full yield). These procedures are important for the study of the simplified curves used in 
some methodologies of the refined plastic hinge method (RPHM) analysis. The study will use 
the strain compatibility method (SCM), where, if the axial strain of the cross-section point is 
known, the section stiffness is obtained using the tangential Young's modulus derived from 
the materials constitutive relationship. A fiber discretization algorithm is applied and the 
residual stresses are explicitly inserted into the fibers automatically. The methodology was 
calibrated using the moment-curvature relationship and the flexural stiffness-bending 
moment curve. These results were numerically stable and good convergence with literature 
data was obtained. In general, the residual stress model of the American standard (AISC, 
2016) defines a larger elastic region within the interaction diagrams then European model 
(CEN, 2005). The results obtained showed that the initial yield curves for steel I-sections 
under minor axis bending require revision for application to RPHM, mainly due to the loss of 
symmetry in relation to the ''M'' axis in the normal force-bending moment (''NM'') 
interaction diagram.
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1. Introduction
In steel structures analysis some factors, such as geometric imperfections and residual stresses, can contribute to the 
reduction of the structural system’s bearing capacity. Residual stresses occur from unequal cooling of the parts, after 
the rolling, cutting, welding processes or mechanical operations (in case of cold-formed sections) [1]. According to 
Alvarenga [2], several laboratory tests allowed the appearance of simplified models that are used to represent the 
residual stresses. However, in real structural elements, the individual behavior is quite variable and presents an 
extensive field of research that is yet to be explored.

Huber and Beedle [3] investigated residual stresses through experimental studies, based on the behavior of steel I-
sections subjected to axial compression. Galambos and Ketter [4] also performed measurements of residual stresses 
in hot rolled I-sections subjected to axial compression; this model is widely used today for the development of 
numerical analyses. These two works from the 50’s stand out to the present day, as will be reported in Section 2, since 
design codes use their models for design prescriptions.

According to Abrambes and Quach [5], an extensive research into the influence and distribution of residual stresses on 
steel members has been done, including welded [6,7], hot-rolled [8,9], and cold-formed [10,11] sections.

Although works from the 1950s, 1970s and 1980s have been cited, this topic remains interesting to this day. Recently, 
several studies were carried out on cold-formed steel hollow sections [12,13], welded I-sections [14], as well as on the 
influence of residual stresses on the behavior of structural elements [15,16] and joints under cyclic loads [17].

In numerical analysis, the consideration of residual stresses can take place in two main ways. The first is for its explicit 
consideration, i.e., the cross section is evaluated considering the stresses or strains prescribed in each part of the 
section [18,19]. This methodology is able to accurately capture the degradation of the flexural stiffness of the elements 
as the plastification advances in the cross section. Thus, it is possible to evaluate in which regime (elastic, elastoplastic 
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and plastic) is each part of the section located as well as the influence of residual stresses on these data. However, 
even with these advantages, this method demands an intense computational effort.

The second way is commonly associated with the refined plastic hinge method (RPHM) and starts from the inclusion of 
residual stresses in an approximate manner, delimiting the elastic regime of the section as a whole through simplified 
analytical equations [20,21]. Although the RPHM is approximate, it presents accurate and fast results for simulation of 
steel [20], reinforced concrete [22] and steel-concrete composite structural systems [21,23,24].

Using the RPHM, Li et al. [25] made a numerical study of rectangular tubular cross-sections and welded I-cross-
sections. The authors used a methodology based on quasi-Newton methods for the cross-sectional analysis. In this 
work, based on specific residual stress models for the types of sections, the authors evaluated the initial (IYC) and full 
(FYC) yield curves. This study opens the discussion of how IYCs should be obtained.

On the other hand, the study of the flexural stiffness variation as a function of the increase in bending moment is also 
interesting to simulate the degradation of the cross sectional mechanical properties. Zubydan [26] made a specific 
study of UB (I-shaped) and UC (H-shaped) steel cross-sections under minor axis bending. In this study, the author 
proposed an empirical formulation for calculating the flexural stiffness degradation of these sections. Chiorean [18] 
made a brief study of the behavior of a steel I-section fully encased in concrete considering the residual stress models 
from American and European design codes. Deus et al. [27] applied the concepts of generalized stiffnesses to assess 
the degradation of cross-section stiffness throughout the load-history of the steel arches analysis. However, there is no 
need to evaluate IYCs. These curves are of fundamental importance to limit the linear-elastic behavior of flexural 
stiffness in the RPHM context considering hybrid finite elements to simulate plasticity [20].

The strain compatibility method (SCM) emerges as an option to evaluate both the IYCs and the flexural stiffness-
bending moment relationship. SCM was defined by American Institute of Steel Construction (AISC) [28] as method for 
determining the stresses considering the stress-strain relationships of each material and its location with respect to 
the neutral axis of the cross section.

Design codes such as Eurocode 3 (EC3) [29] and AISC [28] present different models for the description of the residual 
stresses on the steel cross-section. Such differences may be determinants of structural behavior, especially after the 
initial yielding process of one or more structural elements. This paper’s aim is to study the influence of the prescribed 
models in design codes for the residual stresses and to evaluate them in the 'context of cross-sectional bare steel and 
steel-concrete composite sections. As a result, curves that support the two methodologies that fit in the RPHM context 
will be provides, one of them using the IYC and the other using the flexural stiffness-bending moment.

2. Cross-sectional analysis

2.1. Automatic discretization
To make the analysis of the deformed cross-section condition and obtain the bearing capacity and its stiffness, a 
section discretization is made. In plane structures study, the layer discretization is satisfactory [23]. Herein, the residual 
stresses will be introduced explicitly in the steel cross-section. Thus, the two-dimensional discretization will be done, as 
shown in Figure 1.

The concept of sub-regions is then applied (Figure 1(b)). By means of a structured mesh generator, the cross-section is 
divided into smaller regions. Although only a full encased I-section is shown in Figure 1, the algorithm is applied to 
several types of steel, reinforced concrete and composite cross-sections.
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(a) Cross section (b) Definition of sub-regions (c) Final discretization

Figure 1. Cross section discretization

 As an initial parameter, the discretization has provided the number of divisions in both directions (xy ) as input data. 
After obtaining the sub-regions, a search is made to find sections with larger areas. The main objective of this 
methodology is to generate a fiber mesh with approximately equal sizes throughout the cross-section minimizing 
errors in obtaining the section flexural stiffness.

After the discretization, some data are substantial to obtain the moment-curvature relation, through the Newton-
Raphson method. They are the fiber areas and their respective positions. The x  and y  coordinates of each fiber are 
referenced to the section’s plastic centroid (PC), thereby minimizing convergence problems [30]. As defined by Chen et 
al. [31], as the origin of the reference system for the positions of the fiber areas, there is the possibility of using the 
geometric centroid of the section, or even the PC. The latter is better to avoid problems of non-convergence in 
asymmetric sections under bi-axial moments when subjected to high axial compression loads. Although in the present 
study symmetrical sections under uni-axial moments are approached, the reference axes in PC is used and it is defined 
as follows [32]:

xpc =
xc Ac fc + xs As fy + xr Ar fyr

Ac fc + As fy + Ar fyr
 and ypc =

yc Ac fc + ys As fy + yr Ar fyr

Ac fc + As fy + Ar fyr
(1)

where Ac , As  and Ar  are the concrete, steel section and reinforcement areas; xc , xs  and xr , yc , ys  and yr  are the 
coordinates of the centroid, of the respective areas, relative to an initial reference system; and fc , fy  and fyr  are the 
strengths of the concrete, steel section and reinforcement bars, respectively.

2.2. Residual stresses and materials constitutive models
Although the SCM-based methodology is generalized, that is, applicable to any cross-section type, this paper focuses 
exclusively on the steel and steel-concrete composite I-sections’ behavior submitted to 2D eccentric loads. Thus, the 
residual stress models used in this research are defined by design codes for this type of cross-section.

The EC3 [29] uses the residual stress model based on Huber and Beedle’s [3] proposition, shown in Figure 2(b). In this 
model, the stresses are arranged in the cross-section plates by a bilinear distribution. Furthermore, the σr  values 
depend directly on the relation between the cross-section height h  and its width b , as follows:

σr = {0.5fy ,    h /b ≤ 1.2
0.3fy ,    h /b > 1.2

(2)

where fy  is the yield strength of the steel section, b  is the flange width and h  is the section height.
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(a) Steel section (b) EC3 [29] (c) AISC [28]

Figure 2. Design codes models to describe the residual stresses

 AISC [28] follows the proposal of Galambos and Ketter [4] that describes the residual stresses at the flanges in a similar 
way, but with different maximum values of tensile, σrt , and compression, σrc . In the web, the distribution is constant, 
as shown in Figure 2(c), and described as:

{ σrc = 0.3fy

σrt = σrc bt
bt + w (h − 2t )

(3)

where t  and w  are the flange and web thickness, respectively.

2.3. Steel constitutive relationship

For both profile steel and reinforcement steel, the elastic-perfectly plastic constitutive model describes the material 
uniaxial behavior. The steel has isotropic behavior, i.e., the tensile and compression behavior is exactly the same. Thus, 
in Figure 3, only the section referring to the first quadrant of the constitutive relationship is shown.

Figure 3. Steel constitutive model
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 Since the behavior of the profile steel and the reinforcement bars is the same, just by changing the variables, the 
equation referring to only one of them (profile) will be presented. Thus, the steel constitutive relationship is written as 
follows:

σs = { − fy , − ϵu ≤ ϵ ≤ − ϵy

Es ϵ , − ϵy < ϵ < ϵy

fy , ϵy ≤ ϵ ≤ ϵu

(4)

where fy  is the yield steel strength, ϵy  and ϵu  are the yield and ultimate strains, respectively, and Es  is the modulus of 
elasticity. The subindex r  may be added for the reinforcement variables.

2.4. Uniaxial behavior of concrete
Concrete has distinct mechanical properties with respect to tensile and compression. With respect to tensile, this 
material exhibits maximum strength fcr  (Figure 4(b)). It is also emphasized that when the strength fcr  is reached, the 
cracking process begins. The concrete loses strength and stiffness in case of strains greater than εcr . Thus, several 
researchers and even design codes disregard their contribution when tensioned. In the present study, under tensile, 
the constitutive relationship proposed by Vecchio and Collins [33], shown in Figure 4(b), is used. The compressed 
concrete is modeled as defined in Chiorean [18], as it is the second-degree parabola presented in a reduced form. 
Thus, to describe the concrete behavior we have:

σc = {
Etr ε , 0 ≤ ε ≤ εcr

fcr
α1α2

2

1 + 500ε
ε > εcr

− [ 2ε
εci

− ( ε
εci

)2] fc , εci ≤ ε ≤ 0

− fc [1 − γ (
ε − εci

εcu
− εci ) ] , εcu ≤ ε ≤ εci

(5)

in which εci , εcu  and εcr  are the limit strain of the compressive non-linear behavior of concrete, the concrete ultimate 
strain in compression, and the initial cracking strain, respectively; fcr  is the cracking strength of the concrete taken as 
1.4 (fc /10)2/3 [32]; Etr  is the concrete Young’s modulus in tensile before the cracking; α1 is the factor that considers the 
interaction of the reinforcement bars and the concrete, and α2 considers the effects of load duration and cyclic loads. 
Finally, γ  is the parameter associated with the concrete softening.

(a) Compression behavior (b) Tensile behavior

Figure 4. Concrete constitutive relationship

2.5. Moment-curvature relationship

In this work, the Newton-Raphson iterative method is used to obtain the moment-curvature relationship (M − Φ). For a 
fixed axial force value, N , increments are given at the external bending moment, M , until the full yield bending 
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moment is reached. The incremental strategy is given by [34]:

Mj +1 = Mj + ΔΦEIT (6)

where ΔΦ is a constant curvature increment given as input data and EIT  is the tangent flexural stiffness, presented in 
Subsection 2.6.

Figure 5. Linear strains field around x axis

Figure 5 illustrates the linear distribution of strains in the steel cross-section under an axial force-bending moment 
combination. Note that the total axial strain at the i th fiber, εi , is given by a linear function. Therefore:

εi = ε0 + εri + Φyi (7)

where yi  is the distance between the plastic centroid (PC) of the analyzed fiber and the cross-section PC, ε0 is the axial 
strain in the section PC, εri  is the residual strain, and Φ its curvature. After discretization, the residual stresses σri  are 
calculated in the center of each subarea, later these stresses are transformed into residual strains (εri ) via Hooke's law 
(εri = σri /Es ).

The variables ε0 and Φ are the positions of the strain vector X = [ε0 Φ]T . It is necessary to adjust the vector X  until the 
deformed shape of the section is consistent with the external forces. Numerically, it can be said the section equilibrium 
is obtained when the following equation is satisfied:

F (X ) = fext − fint ≅ 0 (8)

where the external forces vector, fext , is defined by the axial force, N , and bending moment, M .

However, the internal force vector is given by classical integral expressions for the axial force, Nint , and bending 
moment, Mint . Once areas, Ai , and positions, yi , of each fiber are known, the integral becomes the sum described as:

fint = { Nint = ∫
A

σ [ε (ε0, Φ)]dA

Mint = ∫
A

σ [ε (ε0, Φ)]ydA } ≅ { Nint ≅ ∑
i =1

nfib

σi [εi (ε0, Φ)]Ai

Mint ≅ ∑
i =1

nfib

σi [εi (ε0, Φ)]  yi Ai }
(9)
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with nfib  being the number of fibers used in the cross-section discretization. Fibers stresses, σi , are dependent on the 
deformed shape of the cross-section, and are therefore functions of ε0.

While it is appropriate to initiate the process with X = 0, convergence is achieved in the first iteration only if external 
forces are null. Applying the expansion in Taylor series in Eq. (8), the results appear in the following set of non-linear 
equations:

F (X + δX ) = F (X ) + ∂F (X )
∂X δX (10)

 Starting from the supposed equilibrium at point X + δX, that is, F(X + δX) = 0, and knowing that δX = Xk +1 − Xk , Eq. 
(10) can be rewritten as:

Xk +1 = Xk + F ′ (Xk )−1F (Xk ) (11)

where F  is the Jacobian matrix of the non-linear problem stated in Eq. (8). That is:

F′ = ( − ∂F
∂X ) = [ f11 =

∂Nint
∂ε0

f12 =
∂Nint
∂Φ

f21 =
∂Mint

∂ε0
f22 =

∂Mint
∂Φ ]

(12)

 The term f11 can be determined as follows:

f11 =
∂Nint
∂ε0

= ∂
∂ε0

[ ∫
A

σ [ε (ε0, Φ)]dA ] = ∂
∂ε0

[ ∫
A

σ (ε0 + εri + Φyi )dA ] (13)

in which it becomes necessary to use the Chain Rule to solve the previous equation. That is:

f11 = ∫
A ( ∂σ

∂ε
∂ε
∂ε0 )dA = ∫

A ( ∂σ
∂ε

∂(ε0 + εri + Φyi )
∂ε0 )dA = ∫

A
∂σ
∂ε dA (14)

 The derivative of stress, σ , with respect to strain, ε , results in the tangent modulus of elasticity, ET . In this way, f11 can 
be write as:

f11 = ∫
A

ET dA = ∑
i =1

nfib

ET ,i Ai
(15)

 Analogous to the development of f11, the other terms of F′ are given by:

f12 =
∂Nint
∂Φ = ∂

∂Φ [ ∫
A

σ [ε (ε0, Φ)]dA ] = ∫
A

ET ydA = ∑
i =1

nfib

ET ,i yi A i
(16)

f21 =
∂Mint

∂ε0
= ∂

∂ε0
[ ∫

A
σ [ε (ε0, Φ)]ydA ] = ∫

A
ET ydA = ∑

i =1

nfib

ET ,i yi Ai
(17)

f22 =
∂Mint

∂Φ = ∂
∂Φ [ ∫

A
σ [ε (ε0, Φ)]ydA ] = ∫

A
ET y2dA = ∑

i =1

nfib

ET ,i yi
2Ai

(18)

 The convergence criterion adopted in this paper is based on the ratio of the Euclidean norms of the unbalanced force 
vector, F, and the external forces vector, fext . Thus, this ratio should be less than a tolerance, which is assumed to be 
10-5 here.
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2.6. Flexural stiffness
The analysis of the cross section starts with the plastic centroid (PC) fixed in the position given by Eq. (1). However, as 
the internal forces vary, the deformed configuration of the section starts to present increasingly larger axial strains 
and, consequently, the PC changes position. In this way, the PC position is evaluated as:

yPC =
∫

A
ET ydA

∫
A

ET dA

=

∑
i =1

nfib

ET ,i yi Ai

∑
i =1

nfib

ET ,i Ai

(19)

 Tangent flexural stiffness, that is, using values of the modulus of elasticity tangent to the constitutive relationships, 
must be calculated in relation to the updated position of the PC, yPC . Thus, the EIT  stiffness is given by:

EIT = ∫
A

(y − yPC )2ET dA = ∫
A

y2ET dA − ∫
A

2(y )(yPC )ET dA + ∫
A

yPC
2 ET dA (20)

 Since the system is discretized in fibers, the integrals of the previous equation become summations. That is:

EIT = ∑
i =1

nfib

yi
2ET ,i Ai − 2∑

i =1

nfib

yi ET ,i Ai yCP + ∑
i =1

nfib

ET ,i A i yCP
2 (21)

 Substituting the value of yPC  (Eq. (19)) in Eq. (21), we arrive at:

EIT = ∑
i =1

nfib

yi
2ET ,i Ai − 2∑

i =1

nfib

yi ET ,i Ai ( ∑
i =1

nfib

ET ,i yi Ai

∑
i =1

nfib

ET ,i Ai ) + ∑
i =1

nfib

ET ,i Ai ( ∑
i =1

nfib

ET ,i yi Ai

∑
i =1

nfib

ET ,i Ai )2

(22)

which can be reduced to:

EIT = ∑
i =1

nfib

yi
2ET ,i Ai − ∑

i =1

nfib

yi ET ,i Ai

∑
i =1

nfib

ET ,i yi Ai

∑
i =1

nfib

ET ,i Ai

(23)

 Correlating Eqs. (15-18) to Eq. (23), it is noted that EIT  can be described in terms of the constitutive matrix of the cross 
section. Thus, the flexural stiffness of the section can be written as:

EIT = f22 −
f12f21

f11
(24)

 Graphically, the previous equation refers to the tangent flexural stiffness to the moment-curvature relationship.

2.7. Yield curves
When, for a given axial force, the maximum bending moment of the moment-curvature is reached, there is a total 
section plastification. It is defined such that a pair of forces is a point on the full yield curve. Thus, the procedure 
described in Subsection 2.3 is made for each increment of the bending moment until it singularizes the Jacobian 
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matrix or a fiber reaches the maximum axial strain of its component material, defined by the constitutive relationship. 
The bending moments used for the full yield curve are defined considering the limit point of the moment-curvature 
relationship (maximum bending moment), since after this point is reached, the cross-sectional softening process 
begins. Considering the applicability of these curves obtained here in the RPHM and a numerical methodology that 
neglects this effect, the descending stretches of the moment-curvature relationship [35,36] will be neglected in this 
approach.

The initial yield curve is also obtained from the moment-curvature relationship. When the first fiber of the section 
presents an axial strain, εi , greater than the yield strain of the steel, εy , and/or the initial yield strain of the concrete, 
εci /2 [21], the fiber begins to degrade, causing the section to consequently lose stiffness. The moment responsible for 
this fact is considered the initial yield bending moment.

The flowchart for obtaining the interaction curves is illustrated in Figure 6.

Figure 6. Flowchart for obtaining the interaction curves

3. Numerical applications

In this section, the numerical procedure described in this paper will be applied. Isolated steel I-sections and an 
encased steel I-section will be studied. In both cases, the modeling calibration is initially carried out considering the 
results present in the literature. Thus, moment-curvature and bending moment-flexural stiffness relationships are 
plotted to assess the accuracy of the approach described in this paper. In a second step, the interaction curves are 
presented and discussed. In all the data simulated here, a constant increment of curvature, ΔΦ (Eq. (6)), equal to 
0.001/m was used.

3.1. Steel sections
Zubydan [26] analyzed the flexural stiffness variation in I (UB) and H (UC) sections versus the increase of the bending 
moment acting in the cross-section. The author exclusively studied steel elements under minor axis bending. Thus, the 
author used the considerations of EC3 [29] to define the residual stresses distribution. The material yield strength is 25 
kN/cm2 and Young’s modulus is given by 20000 kN/cm2.

Figure 7 shows the moment-curvature and bending moment-flexural stiffness curves for both UC and UB sections 
using the EC3 [29] and AISC [28] considerations. Through Figures 7(b) and 7(d), the good agreement between the 
results obtained considering the European residual stress model with the Zubydan [26] results, for both UB and UC 
sections is shown. Using the AISC [28] model, a good proximity to the other results for the UB sections can be 
observed. These cross-sections have a height that is greater than the width; thus, the residual compressive stress at 
the flange ends is equivalent to the EC3 [29] residual stresses, which considerably approximate the responses (Figure 7
(c)).
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(a) UB sections: Moment-curvature relationship (b) UB sections: Bending moment-flexural stiffness

(c) UC sections: Moment-curvature relationship (d) UC sections: Bending moment-flexural stiffness

Figure 7. Steel UB and UC non-linear behavior

 Using the normative approaches described in item 2.2, Figure 7(d) does not show the same convergence between the 
results. It was verified that in all the analyzed cases, the sections with the American residual stress model began to 
lose flexural stiffness for larger values of bending moment than the simulations with the EC3 model [29]. This situation 
occurs because in UC sections, the EC3 [29] prescription defines the value of σr  as 0.5 fy ; and in AISC [28], the same 
values that are assigned to I-sections are used in this case, i.e., σrc = 0.3fy . As the tensile stresses are always smaller 
than the compression stresses, it can be stated that the AISC [28] presents a greater domain for the elastic range of 
the cross-section.

To validate the assertion made above, the IYCs and FYCs are shown in Figures 8-11. It is verified that the approaches 
already present in literature [20] are equivalent to the IYCs obtained using the EC3 [29] residual stress model in 
elements under major axis bending.

When verifying the IYCs considering the AISC [28] model, an asymmetry in the horizontal axis can be observed. This 
fact is determined by the constant distribution of residual tensile stresses in the section web. The values of σrt  when 
under normal tensile force and the value of σrc  when under compression are determinant in obtaining the IYC; this 
fact contributes to a greater elastic region in the NM  diagrams.
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(a) UB 127×76×13 (b) UB 457×191×133 (c) UB 914×305×201

Figure 8. Yield curves for UB sections - major axis bending

(a) UB 127×76×13 (b) UB 457×191×133 (c) UB 914×305×201

Figure 9. Yield curves for UB sections - minor axis bending

 However, when analyzing the IYCs in the minor axis, the asymmetry on the horizontal axis is more pronounced. A 
divergence in the curves’ behavior obtained for the major and minor axes is then observed. It has been found that the 
behavior shown in the curves arises from the models presenting their higher tensile stresses in the web and in the 
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flange center, on the section plastic centroid. Thus, under compression loads, the behavior is perfectly linear with a 
greater influence of the bending moment. Under tensile stresses, however, the axial load becomes more relevant, 
completely changing the curve shape.

(a) UB 127×76×13 (b) UB 457×191×133 (c) UB 914×305×201

Figure 10. Yield curves for UC sections - major axis bending

(a) UB 127×76×13 (b) UB 457×191×133 (c) UB 914×305×201

Figure 11. Yield curves for UC sections - minor axis bending
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 Three points are highlighted in Figure 9(a): A , B  and C . Point A  represents the situation where the cross section shows 
the greatest bending moment within the elastic regime. For the UB sections, it is apparent that this point is coincident 
for both residual stress models, EC3 [29] and AISC [28]. This is because both these models present compression 
stresses at the flanges ends equal to 0.3fy . For minor axis bending, these stresses are responsible for determining the 
maximum possible elastic bending moment in the section. To reach this moment, an axial tensile force, Na , capable of 
canceling the value of the residual compression stresses (0.3fy ) is required, that is:

Na = Ag (0.3fy ) (25)

where Ag  is the steel section area and fy  is the material yield strength.

Thus, the maximum tensile stresses in the elastic bending are null before the bending moment application, so that it is 
given at point A  by:

Ma = Wy fy (26)

in which Wy  is the section elastic modulus in minor axis.

Points B  and C  differ by the maximum residual tensile stress values given in the design codes discussed in the present 
study. Eq. (2) defines the residual tensile stress in the middle of the flanges and the web given by EC3 [29] for UC 
sections as 0.3fy , which is same value that is adopted for the compressed parts of the cross-section.

Note that residual tensile stresses occur on the PC, that is, they only influence the axial load, N . Thus, at point B , a 
horizontal plateau is evident, indicating that the tensions generated by the axial load at that point, together with the 
residual stresses (0.3fy ), are practically equal to fy . That is, Nb = Ag 0.7fy . In relation to the bending moment, it should 
be noted that the normal stresses generated by Nb  are tensile, relieving residual compression stresses (-0.3fy ) at the 
webs ends. Thus, Mb  can be defined as Mb = Wy  (0.6fy ).

The AISC [28] defines σrt  as a function of the residual compressive stress, σrc . In Eq. (3), it is shown intuitively that in all 
cases, σrt  is less than σrc .

It can be stated that for this norm, the elastic regime is higher than in EC3 [29], as seen in Figure 9. Point C  is analyzed 
in the same manner as point B , except for using American code considerations.

Point D , as shown in Figure 11(a), follows the same approach shown in the UB sections curves. Note that the UC 
sections squarer in shape, modifying the value of σr  given by the European design code. In this situation, σr = 0.5fy . 
Thus, since the axial tensile force responsible for overriding the residual compressive stresses at the webs’ ends is 
Nd = Ag (0.5fy ), the maximum bending moment is obtained as described for point A , discussed above. However, by 
canceling these compressive stresses, the tensile stresses in the PC increase, which then reach the fy  value. This 
description is very clear in Figure 11, where the EC3 [29] residual stress model is used.

With the present study, the need to review the initial yield curves for steel I-sections subjected to minor axis bending is 
evidenced. With a brief description of the ordered pairs referring to points A , B , C  and D , it is possible to draw 
simplified curves, where the non-linear procedure located in the cross-section can be avoided by reducing the 
processing time in the numerical structural analyses via RPHM. It is worth mentioning in the study by Gonçalves et al. 
[37], for the application of the RPHM for the analysis of elements under minor-axis bending, the authors had to use the 
tangent elastic modulus for the flexural stiffness degradation, since the initial yield curves did not portray the reality.

3.2. Steel-concrete composite section

Chiorean [18] presented a study of the influence of residual stress models on the steel-concrete composite section 
behavior as shown in Figure 12. This is a W12 × 120 section that is fully encased in concrete and reinforced by 4 20 mm 
diameter bars. The section dimensions h , b  and c , defined in Figure 3, are taken as 600 mm, 60 0mm and 30 mm, 
respectively. The strengths steel section, reinforcement steel and compressive concrete strengths are taken equal to 
30, 40 and 2 kN/cm2, respectively. The modulus of elasticity of the steel section and the reinforcement are equal to 
20000 kN/cm2. In addition, it is noted that the concrete limit strains, in concrete, the final strain of the second-degree 
parabola, εci , was taken as 0.002 and the ultimate strain was defined as 0.0035. The steel ultimate strain was taken as 
0.01. The concrete softening was simulated by the parameter γ = 0.15, and was considered α1 = 1 and α2 = 0.75 for the 
concrete tensile behavior [18].

 Chiorean [18] performed several analyses using both EC3 [29] and AISC [28] residual stress models. Additionally, 
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Figure 12. W12×120 section totally encased in concrete (dimensions in mm)

results were also generated disregarding the effect of such residual stresses (WRS data). All these analyses were also 
done in the present work in order to calibrate the models, and to verify the initial (IYCs) and full (FYCs) yield curves of 
this composite section. Another aim of this analysis is the evaluation of the influence of the elastic limit strain of the 
concrete elastic regime (εci /2) [21] on definitions of IYCs. The moment-curvature relationship (Figure 13(a)) and flexural 
stiffness-bending moment curves (Figure 13(b)) for the major axis are presented below. The results in all cases were 
compared with literature. For each curve, the axial force values were set as: 4000 kN, 8000 kN and 12000 kN. The 
numerical procedure described in item 2.5 was, thus, used.

(a) Moment-curvature relationship – major axis (b) Moment-flexural stiffness – major axis
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(c) Moment-curvature relationship – minor axis (d) Moment-flexural stiffness – minor axis

Figure 13. Analysis of steel-concrete composite section

 Results of the analyses were observed to be in good agreement with the results obtained by Chiorean [18]. It is worth 
mentioning that in some cases, the moment-curvature relationships found in the present study are less ductile than 
those in the literature. Although procedures used are similar, the stopping criteria are different as they directly 
influence the moment-curvature relationship’s critical bending moment.

All the curves in Figure 13(b) demonstrate a marked decrease in flexural stiffness. This decrease is related to the 
cracking start in the most tensioned fibers and the consequent decrease of the concrete tangent modulus of elasticity. 
Note that in the literature for approaches to steel-concrete composite structures [21,23,24], this fact is considered in a 
simplified form, for example, the 40% reduction in concrete section flexural stiffness. Thus, to eliminate the 
approximation, there should be three curves within the NM diagram, i.e., in addition to the FYC and IYC, there is a 
need for an initial cracking curve for a more realistic simulation [22].

The comparison of the moment-curvature relationships (Figure 13(a)) and the bending moment-flexural stiffness 
curves (Figure 13(b)) shows a slight divergence in the EC3 [29] and AISC [28] responses. In these figures, it is clear how 
the AISC [28] approach allows for greater stiffness than the EC3 [29] approach. This is because the W12 × 120 section is 
almost shaped like a square, that is, h /b < 1.2. Thus, the European code defines that the maximum residual stresses 
acting in the section reach 0.5fy , which differs from Galambos and Ketter’s [4] proposal.

It is also worth mentioning that, in the analysis without residual stresses (WRS results), it is observed, as expected, a 
more rigid behavior for all the moment-curvature relationships as well as presented in bending moment-flexural 
stiffness curves.

The same observations made for analysis around the major axis can now be made for the minor axis (Figures 13(c) and 
13d), which, although when presenting curves with different values, the observed behavior is quite similar.

Figures 14(a) and 14(b) show both IYCs and FYCs obtained using the EC3 [29] and AISC [28] requirements for the major 
and minor axes bending. In addition, the results found disregarding residual stresses are also presented. It is worth 
mentioning that there was good accuracy between the results obtained in the present study and those presented by 
Chiorean [18]. Although practically equal procedures have been used to obtain the moment-curvature relationship, the 
stopping criterion is different. This criterion is precisely the one responsible for defining the FYCs points, which 
validates the use of the Jacobian matrix singularity in the definition of the cross-section-bearing capacity. As can be 
observed in Figures 14(a) and 14(b), there is a slight difference in the FYCs using the residual stresses of EC3 [29] and 
AISC [28]. The main factor of comparison is in the IYCs. There is a significant divergence for the major and minor axes, 
and in both situations, the AISC [28] model provided a higher elastic region within the NM  diagrams. It is also noted 
that when neglecting the effect of residual stresses, the elastic region of the NM  diagram is amplified, as expected. 
Furthermore, it can be verified for intermediate values of N , the IYCs are coincident for the three results, defining that 
for these values, the strain εci  is responsible for defining the referred curve.
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(a) IYC and FYC – Major axis (b) IYC and FYC – Minor axis

Figure 14. Yield curves of composite section

 Additionally, a study was carried out considering the variation of the parameter γ , which deals with the concrete 
softening under compression. In Figures 15 and 16, major and minor axes bending, respectively, are presented 
moment-curvature relationships considering axial compressive forces of 4000 kN, 8000 kN and 12000 kN. In addition, 
the parameter γ  was adopted as 0, 0.5 and 1.

(a) For N = 4000 kN and γ =0 (b) For N = 4000 kN and γ =0.5 (c) For N = 4000 kN and γ =1

https://www.scipedia.com/public/File:14aa.png
https://www.scipedia.com/public/File:14aa.png
https://www.scipedia.com/public/File:14b.png
https://www.scipedia.com/public/File:14b.png
https://www.scipedia.com/public/File:15a.png
https://www.scipedia.com/public/File:15a.png
https://www.scipedia.com/public/File:15b.png
https://www.scipedia.com/public/File:15b.png
https://www.scipedia.com/public/File:15cc.png
https://www.scipedia.com/public/File:15cc.png


https://www.scipedia.com/public/Lemes_et_al_2022b 17

Í. Lemes, J. Silva, E. Batelo and R. Silveira, Influence of residual stress models prescribed in design codes for steel I-
section behavior, Rev. int. métodos numér. cálc. diseño ing. (2022). Vol. 38, (4), 37

(d) For N = 8000 kN and γ =0 (e) For N = 8000 kN and γ =0.5 (f) For N = 8000 kN and γ =1

(g) For N = 12000 kN and γ =0 (h) For N = 12000 kN and γ =0.5 (i) For N = 12000 kN and γ =1

Figure 15. Influence of concrete softening parameter γ  in major axis bending

 It can be seen for both major and minor axes bending, for the axial compressive force of 4000 kN, the flexural stiffness 
is largely similar to the moment-curvature relationship, considering the residual stress models of AISC [28], EC3 [29] 
and still despising them (WRS). Graphically, you can see a slight difference in the maximum bending moment for these 
cases. See also that although the bearing capacity decreases as γ  increases, the consideration or not of the residual 
stresses in the analysis has little influence on the final response of the cross-sectional behavior.

As for the force of 12000 kN, it can be seen that this proximity in the flexural stiffness of the three curves means that 
the initial stiffness of the moment-curvature relationship is not the same. The effect of residual stresses is more 
noticeable than in the analyzes considering axial compressive forces of 4000 kN and 8000 kN. Furthermore, even for 
the force of 12000 kN, the greatest differences between the maximum bending moments are found. Furthermore, 
when considering the EC3 [29] residual stress model, it can be seen that it implies a reduction in the bearing capacity. 
In addition, disregarding residual stresses promotes analyzes with higher strength capacities in all cases.
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(a) For N = 4000 kN and γ =0 (b) For N = 4000 kN and γ =0.5 (c) For N = 4000 kN and γ =1

(d) For N = 8000 kN and γ =0 (e) For N = 8000 kN and γ =0.5 (f) For N = 8000 kN and γ =1

(g) For N = 12000 kN and γ =0 (h) For N = 12000 kN and γ =0.5 (i) For N = 12000 kN and γ =1

Figure 16. Influence of concrete softening parameter γ  in minor axis bending

 The force of 8000 kN generated intermediate data in relation to those mentioned above. Thus, it can be concluded the 
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residual stresses are more pronounced as the axial compressive force increases, and at the same time that the 
concrete softening effect is considered with greater intensity.

4. Conclusions
The present study evaluated the behavior of steel I-sections considering two residual stress models prescribed in 
design codes [28,29]. For the analyses, a SCM-based non-linear methodology was used, where the constitutive 
relationships and the residual stresses were explicitly used.

The curves that were obtained and plotted focused on the two methodologies of plasticity simulation in the refined 
plastic hinge method (RPHM): the use of the moment-curvature relationship and the initial (IYC) and full (FYC) yield 
curves. In the first step, the numerical approach was calibrated with comparisons of the results found in the present 
work along with data provided in the literature [18,26]. In a second step, the yield curves for bare steel sections and for 
a steel concrete-composite section were generated.

Some general conclusions can be made. They are as follows:

In the calibration of the results, it was possible to verify the formulation accuracy in relation to the reference 
data for both bare steel and steel-concrete composite tested sections;

In general, regardless of the adopted residual stresses model, the FYCs were practically identical for the bare 
steel sections, and very similar for the composite section. Thus, it can be concluded that the adopted residual 
stresses model does not change the bearing capacity of the cross-sections;

For the bare steel section, the IYCs in the minor axis bending analysis presented asymmetry in relation to the 
horizontal axis (bending moment). This asymmetry demonstrates the need to review the propositions of the 
RPHM for the evaluation of minor axis bending;

The IYCs can be defined through specific analytically calculated points. In the present work, they were defined 
as points A , B , C  and D ;

In all simulated cases, the AISC [28] approach defines a larger elastic region within the NM diagrams. A more 
detailed study of the UB 914 × 305 × 201 section provided a range of quantitative parameters for the 
validation of the above information. By comparing all the bending moment increments in the moment-
curvature analysis, it was found that, on average, the analysis using the European residual stress model was 
4.81% less rigid than the one using the American model;

Still observing the IYC of UB 914 × 305 × 201, we can see that the differences between the design code models 
appear for the tensiled section. In this case, for example, the average difference between the bending 
moments is 31.25% for the major axis bending. This cross section was chosen because the graphical 
responses of the moment-curvature relationships using the two residual stress models was very closed;

For the analysis of the steel-concrete composite section, it was noticeable the effects of residual stresses 
become more relevant as the axial compressive forces increase and the softening effect of the concrete is 
treated with greater intensity.
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