Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería

A new tool to simulate ground shaking and earthquake losses

Fernando Lopez Hidalgo¹, Manuel Navarro², Sergio Molina³

1 Civil Protection Service of Junta de Andalucía, Almería, Spain

2 Universidad de Almería, Dpto de Química y Física, Almería, Spain

3 Universidad de Alicante, Dpto de Física Aplicada, Alicante, Spain

Abstract

The main purpose of this suite is Planning and Management of Seismic Emergencies before and after future damaging earthquake. This tool is written in ArcGIS software executing a fast and efficient determination of the estimated shakemaps and damage scenarios. The tool allows to select the earthquake source parameters through a defined database; moreover ground motion prediction equations can be chosen and they can be combined according to the study area features. The local site effects are characterized from Vs30 values, which have been achieved by topographic slope as a proxy (even with local correlations) obtained from digital elevation model. The elements exposed to risk are incorporated from the cadastral database after inputs has been refined through an automated analysis. Vulnerability and estimated losses can be determined either empirically (EMS-98 scale and Vulnerability Index, Iv) or analytically (Capacity spectrum). Additionally, a vulnerability modifier is implemented to account soil-structure resonance. Epistemic uncertainties are quantified in the input parameters using a logic tree. This tool has been validated through a representative seismic scenario: the 1910 Adra earthquake (southern Spain) with moment magnitude (M_w) 6.3 and macroseismic intensity VIII (EMS-98 scale) proving the reliability of this program.

🔓 OPEN ACCESS

Published: 28/09/2022

CIMNE

Accepted: 12/09/2022

Submitted: 28/04/2022

DOI: 10.23967/j.rimni.2022.09.007

Keywords:

Emergency planning Shakemaps Vulnerability Damage scenarios GIS

1. Introduction

Seismic risk management involves the physical and structural consequences of an earthquake and the socio-economic considerations affecting the current population or even future generations. Therefore, it integrates evaluation of the risk and the corresponding adopted decisions in order to improve the seismic resilience.

The Iberian Peninsula shows a low to moderate seismicity in the world context with frequent earthquakes of moment magnitude (M_w) generally smaller than 5.5, although, historically, large damaging earthquakes have occurred with epicentral macroseismic intensity (I_0) IX-X in the EMS-98 scale [1], as those of 1829 Torrevieja (Alicante) and 1884 Arenas del Rey (Granada). Both earthquakes caused the collapse of many buildings and a high number of human losses [2].

Recently, several instrumental earthquakes occurred in southeast of Spain, such as: Adra (Almería) 1993 and 1994; Mula (Murcia) 1999; Bullas (Murcia) 2002; La Paca (Murcia) 2005 and Lorca (Murcia) 2011, with magnitudes (M_w) between 4.7 and 5.2 respectively, and I_0 ranging from V to VII (EMS-98 scale [1]). These shocks have shown the relevance of shallow geology for explaining not only the ground motion amplification but the degree and spatial distribution of building destruction [3,4,5,6,7,8].

Consequently, preventive decision-making aimed at doing recommendations for the mitigation of seismic risk is more effective if seismic emergency managers (Civil Protection) have user-friendly software capable of estimating damage and loss scenarios in future earthquakes. This information is essential to develop Seismic Emergency Plans at local level for the municipalities because they establish the organization scheme and action procedures needed to effectively deal with the earthquake emergency. Such procedures are of great importance for any seismically active region, regardless of the level of seismic hazard. The tool has been created based on these ideas.

One of the first seismic risk suites in Spain having this goal in mind is "Simulador de Escenarios Sísmicos-SES2002" [9]. This software was created specifically for the Civil Protection and although it has been widely used, nowadays it is not up to date.

After the development of HAZUS [10], known as a reference for the earthquake losses estimations, numerous modelling tools have been developed by scientists worldwide to estimate seismic risk, although mainly focused on the scientific community. <u>Table 1</u> shows a summary of these tools with a brief comparison in terms of methodologies and results.

Tools Descript ion	HAZUS® [10]	SES 2002 [9]	SEISMO CARE [11]	SELENA [12]	CAPRA [13]	Armagedom [14]	OPENQUAKE [15]	SISMOTOOL		
GIS inte gration	ESRI ArcGis	Map Objects (own GIS)	MapInf o	No	Own GIS	Own GIS	QGIS	ESRI ArcGis		
Open Source	No	No	No	Yes	No	No	Yes	Yes		
Seismic scenario	Deterministic Pre-computed shake Map Probabilistic	Determ inistic	Determ inistic	Deterministic Probabilistic	Probabilistic	Deterministic Probabilistic	Deterministic Probabilistic	Deterministic Pre-computed shake Map		
Ground motion parame ter	Spectral acceleration	Macros eismic intensit y	PGA	Spectral acceleration	PGA	Macroseismic intensity Spectral acceleration	Spectral acceleration	Spectral acceleration		
Site effects: Vs30 values and topo graphy factors	Yes (soil amplification factor or amplified shakemaps) given by users	No	Yes (soil amplific ation factors) given by users	Yes (soil amplification factor; amplified shakemaps and topographic amplification factors) given by users	Yes (computation of amplified shakemaps using transfer functions) given by users	Yes (soil raster file, Liquefaction susceptibility raster file, landslide susceptibility raster file) given by users	Yes (soil amplification factors) given by users	Yes (soil amplification factor; amplified shakemaps and topographic amplification factors) given by users or computed by the tool		
Exposur e	Buildings Infrastructures Population	Buildin gs Popu ation	Buildin gs Infra lstructur es Popul ation	Buildings Population	Buildings Population	Buildings Population	Buildings Infrastructures Population	Buildings Population		
Interfac e to gen erate vul nerable element s	No	No	No	No	No	Yes	No	Yes		
Vulnera bility est imate	USA buildings typologies	No	No	No	No	Yes	No	World-wide buildings typologies		
Resonan ce Soil-St ructure	No	No	No	No	No	No	No	Yes (empirical)		
Damage comput ation	Analytical	Empiric al	Empiric al	Analytical	Analytical	Empirical Analytical	Analytical	Empirical Analytical		
Results Viewer	Buildings, lifelines and essential facilities damage. Fire-following earthquake and Debris generation. Economic losses, Casualties and Shelter. Indirect Losses	Seismic intensit y. Buildi ng dam age. Cas ualties	Buildin g dama ge. Cas ualties. Cost of damag e	Shakemaps in terms of spectral acceleration. Building damage. Casualties. Cost of damage. Estimation of debris and shelter requirements	Physical exposure of construction. Direct economic losses. Probabilistic Risk: Average annual loss and Probable maximum loss.	Shakemaps in terms of intensity and spectral acceleration. Building damage. Casualties	Loss of life. Property damage and social and economic disruption due to earthquakes	Shakemaps in terms of intensity and spectral acceleration. Building and dwelling Damages. Economic losses. Casualties and Shelter		

Therefore, the aim of this paper is to show a new tool (SISMOTOOL) integrating strengths of the known platforms and incorporating new methodologies to reinforce the Civil Protection system. In particular, SISMOTOOL can automatically: a) compute amplification factors due to geology and topographic effects by using digital elevation models (DEM); b) assign and classify the vulnerability of the building stock through the cadastral database; c) include the soil-structure resonance effect in the vulnerability; as well as other improvements, always with the highest processing speed. Therefore, any stakeholder or emergency planner will be able to make decisions in a very short time by handling the program.

2. Methodology

2.1 GIS environment and databases (DB)

On the one hand, SISMOTOOL is coded to be part of the ArcGIS toolbar (Figure 1) because, nowadays, it is one of the world's most powerful mapping and analytics software. The current version works through an Add-in type ArcGIS customization; actually, VB.NET language and the ArcObjects software development kit integrated into a Microsoft Visual Studio programming environment are used to write the code of the tool. VB.NET has been chosen due to the combination of simplicity of use and speed compared to other development language options such as Java, Python or

C++. Since ArcGIS is a commercial software, it is not unusual that stakeholders and emergency planners in the municipalities have it installed in their office and have expertise in its use; and even more, SISMOTOOL extension is an open-source code and, therefore, the source code of the Visual Studio project is provided, i.e. it can be specifically adapted either any user or a free GIS (for instance, QGIS).

On the other hand, some of the main advantages of using ArcGIS is to automatically prepare all the needed DB for an accurate earthquake losses estimation; in other words: Seismic catalogue DB [16], Quaternary faults DB of Iberia [17], Hydrographic network and DEM [18], Cadastral information [19] and Population information [20] could be directly incorporated into the analysis.

The user can interact and process these DBs through various forms that are displayed through the toolbar, such as the one corresponding to the logic tree calculation (section 2.2.7) shown in <u>Figure 2</u>.

2.2 Earthquake loss estimation (ELE) methodology implemented in SISMOTOOL

The main sequence of running SISMOTOOL is shown in Figure <u>3</u>. To begin with, the user will introduce some data in every step through the toolbar (Figure <u>1</u>) and then, execute within ArcGIS.

NAME	TREE WEL	MAGNIT	DEPTH	DATE	HOUR		NAME			ST.	. DIP	RAKE	IE	MI	MA	TREE W	FT	
Adra 1994	0	5.0577	7	04/01/1994	9.32.36		Adra			130	-135	80	18.5	0	15	1		_
Adra 1910	1	6.3	16	16/06/1910	0:00:00		Al-Idrisi (1/2)	J-Idrisi (1/2)			10	75	54.5	ő	11	0		_
Test 1	0	5	0.18	16/06/1910	12:51:40		Al-Idrisi (1/2)			008	10	75	17.2	ő	11	0		
Test 2	0	6	0.46	16/06/1910	12:51:40		Albocásser (1/3	0		013	-90	60	6.8	15	15	0		
Test Alm	0	5.2	1.5	16/06/1910	9-42-54		Albocásser (2/3)			027	-90	60	6.5	1.5	15	0		
Simulacro	0	5.2	1.5	17/08/2021	10:27:36		Albocásser (3/3)			034	-90	60	8.5	1.5	15	0		
-			110		10121100		Albocasser (complete)		027	-90	60	20.4	1.5	15	0			
<						>	Alborán Ridge I	North		080	45	60	37.4	0	11	0		
FARTUR							Alborán Ridge	South		242	70	60	93	0	11	0		
EARTHQU	AKE_WEIGH						Albox	Joaan		255	90	45	10	ő	10	0		
		_					Albufeira			007	80	83	12.6	1	20.5	0		
			[[Albuñuelas			278	-90	50	6.5	ô.	5	0			
NAME			IREE_WEI		Alcalá de Xivert (1/2)				270	-90	60	8.8	1.5	15	ő			
Mapa Peligro	sidad 2012			0			Alcalá de Xivert	(2/2)		211	-90	60	4.8	1.5	15	ő		
Akkar Bomm	er 2010			0			Alcalá de Xivert (complete)			277	-90	60	14.5	1.5	15	0		
Ambraseys 2	005			1			Alcossebre	045	-90	60	16.6	0.02	14	0				
Chiou Young	s 2013			0			Alcov-Cocentaina				45	75	6	0	15	0		
Campbell Bozorgnia 2013			0			Aldehuela				-90	60	3.7	0	15	0			
Local			0			Alfacar			129	-80	50	5.3	0	11	0			
Mapa Peligrosidad 2012 NORMAL_EUROCODICO			0			Alhama de Mur	215	20	70	30	0	12	0					
Akkar Bomm	er 2010 NORM	AL_EUROCODI	со	0			Alhama de Murcia (2/4)				18	70	20	0	12	0		
Ambraseys 2	005 NORMAL	EUROCODICO		0			Alhama de Murcia (3/4)				50	70	12	0	12	0		
Chiou Youngs 2013 NORMAL_EUROCODICO			0			Alhama de Murcia (4/4)				50	70	25	0	12	0			
Campbell Bozorgnia 2013 NORMAL_EUROCODIGO			0												-			
Mapa PGA N	ORMAL_EURO			0											alculati	ion		
				MADRS	TREE 1	WEI	- Dai	mage	-Uninł	nabitab	le Rel	ation	ship -	_	eriod in ntensit	sec or Y	PGA	T
NAME Proxy 200	TYPE m Lev Ate	TRE	E_WEI	IDCM	0			DO	D1	D2	D3	D4	D5		GENE	RATE A	TTENI	
Proxy_200	m Borchero	it_2014 1	1 SPECTRAL METHOD									LAW	TREE					
					WEIGHT		Coef	ľ	ľ	0.5	0.9	1	1	_ ^				
				NAME	TREE_WE	I												
				Eurocodige	0 1				SCOPE OF	THE DAM/	GE STU	DY			CALC	JLATE	SPECTI	RAL
GEOL. AM	PLI. TYPE WE	IGHT		торо.ами	PLI. TYPE WE	IGHT			PR		-				D	AMAGE	TREE	
INFORMAT	ION AND ERR	ORS Current	t path of the	data base: C:\ar	gisGDB\DATO	S/SISMO	TOOL		MU	NICIPAL			_	CA	LCUL/ D	ATE NO Amage	N SPE	CTRAL
		,																

To aid in effective seismic emergency planning, results of damages and losses are calculated at the maximum

available scale from the input data, at the building level and generating raster files with a spatial resolution of up to 5 m pixel (Figure 4).

Although the methodology could be understood at a glance from <u>Figure 3</u>, some procedures, specially developed or coded in SISMOTOOL, are highlighted below.

2.2.1 Ground motion scenarios

The first step in any ELE computation is the description of the seismic impact in terms of a shakemap. To do that, two options are implemented: deterministic scenario and pre-computed shakemap.

2.2.1.1 Deterministic scenario

In the first option, the user can select the source parameters for a given earthquake (moment magnitude, latitude and longitude of the epicenter, focal depth or faulting type) from a pre-defined database of historical earthquakes. Additionally, a proprietary fault DB based on QAFI (Quaternary active faults DB of Iberia [17]) is integrated into the program (Figure 5). Therefore, the user can simulate any possible earthquake related to any of these faults and the rupture area will be estimated using the moment magnitude and the relationship given by Wells and Coppersmith [37]. The rupture area is spatially located in a plane parallel to the chosen fault plane and centered on the hypocenter which can be defined by the user through the epicentral coordinates and the focal depth; however, if the depth is unknown, this parameter will be automatically computed as the intersection of the fault plane with the vertical line from the epicenter. Additionally, a boundary condition is applied assuming that the calculated rupture area cannot get out from the earth's surface.

