

PROCEEDINGS

Effects of Hold Time on Fatigue Crack Growth Behavior in PBF-EB Inconel 718

Qiuyi Wang¹, Rong Yang¹, Bo Chen², Rui Bao^{1,*}

- ¹School of Aeronautic Science and Engineeing, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
- ² Department of Mechanical Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
- *Corresponding Author: Rui Bao. Email: rbao@buaa.edu.cn

ABSTRACT

Effects of hold time on the fatigue crack growth behavior in electron-beam powder-bed-fusion (PBF-EB) Inconel 718 alloy at 650 \circ C have been investigated in this study, with focuses on the anisotropic fatigue cracking resistance and fracture mechanism. The V-type specimen (which loading parallel to the columnar grain boundaries) gives better dwell-fatigue cracking resistance to the H-type specimen (which loading perpendicular to the columnar grain boundaries) due to its large deflections (nearly 90 °) on the crack path. These deflections are related to the change of crack growth mechanism. In both V-type and H-type specimens, when the dwell-fatigue crack tip reaches high angle grain boundaries, the crack exhibits a intergranular propagation behaviour. Besides, discontinuous secondary crack which associated with high angle grain boundaries can be seen in the H-type specimen, indicating that the crack mechanism may be predominantly creep damage.

KEYWORDS

Hold time; crack growth mechanism; powder bed fusion; anisotropism

Acknowledgement: Prof. Hui Peng from Beihang University is acknowledged for his generous help of material preparation and the "111 Center" from Beihang University is acknowledged for its support in international cooperation.

Funding Statement: The study is supported by National Natural Science Foundation of China (No. 12172022).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

