

PROCEEDINGS

Mechano-Regulated Intercellular Waves Among Cancer Cells

Chenyu Liang¹, Bo Zeng², Mai Tanaka³, Andrea Kannita Noy¹, Matthew Barrett¹, Erica Hengartner¹, Abygale Cochrane⁴, Laura Garzon¹, Mitchell Litvinov⁵, Dietmar Siemann³ and Xin Tang^{1,3,*}

¹Department of Mechanical and Aerospace Engineering, University of Florida (UF), Gainesville, FL, 32611, USA ²Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China ³UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA

⁴Department of Physics, University of Florida (UF), Gainesville, FL, 32611, USA

⁵Department of Biomedical Engineering, University of Texas at Austin, TX, 77546, USA

*Corresponding Author: Xin Tang. Email: xin.tang@ufl.edu

ABSTRACT

Cancer accounts for 12.6% of all human deaths worldwide and 90% of cancer-related deaths are due to metastasis: the dissemination of invasive tumor cells from the primary tumors to other vital organs [1-3]. However, how these invasive tumor cells coordinate with each other to achieve the dissemination remains unclear. Recently we discovered that human tumor cells can initiate and transmit previously unknown long-distance (~100s μ m) intercellular biochemical waves in a microenvironment-mechanics-regulated manner. [4-5] In this presentation, we will present our new results on (1) the 2D/3D spatial-temporal characterization of the long-distance and the intra-/inter-cellular Ca²⁺ signals; (2) the functional influences of mechanical microenvironment on the spatial-temporal properties of Ca²⁺ dynamics (i.e., signaling symphony); and (3) the molecular mechanisms and biological consequences of the Ca²⁺ dynamics during tumor progression and metastasis *in vivo*. To our knowledge, this study is the 1st report that shows the detailed characterization and mechanistic dissection of long-distance Ca²⁺ waves in human cancer cells [4-5]. Our results advance the understanding of the mechano-regulated functions/mechanisms of Ca²⁺ signals in human cancer and potentially contribute to the development of new therapies for tumor suppression.

KEYWORDS

Biomechanics; cancer; mechanical microenvironment; Ca²⁺ waves; functional imaging

Acknowledgement: We genuinely appreciate the invaluable scientific comments and technical support from Dr. Adam Cohen (Harvard University), Dr. Tian He (Harvard University and BioNTech), Dr. Christopher Werley (Q-State and Vertex Pharm), Dr. Urs Böhm (INSERM), Dr. Dietmar Siemann (UFHCC), Dr. Lizi Wu (UFHCC), Dr. Jonathan D Licht (UFHCC), Dr. Frederic J Kaye (UFHCC), Dr. Mingyi Xie (UFHCC), Dr. Rolf Renne (UFHCC), Dr. Christine E Schmidt (UFBME), Dr. Todd E Golde (Emory), Dr. Rui Xiao (UF Physiology and Aging), Dr. David Hahn (University of Arizona), Dr. Youhua Tan (Hong Kong Polytechnic University, China), Dr. Celia M Elliott (UIUC), and all their laboratory members.

Funding Statement: This project is supported by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under award number R35GM150812 (X.T.), the National Science Foundation (NSF) under grant number 2308574 (X.T.), the Cancer Pilot Award from UF

Health Cancer Center and the state of Florida through the Casey DeSantis Cancer Research Act (Fla. Stat. § 381.915) (X. T. and D. S.), UF Research Opportunity Seed Fund (X. T.), and the Gatorade Award (X. T.).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References

- 1. Xin, Y, Li, K. M., Huang, M., et al. (2023). Biophysics in Tumor Growth and Progression: from Single Mechanosensitive Molecules to Mechanomedicine. *Oncogene, 42,* 3457-3490.
- 2. Liang, C. Y., Huang, M., Li, T. Q., et al. (2022). Towards an Integrative Understanding of Cancer Mechanobiology: Calcium, YAP, and MicroRNA Under Biophysical Forces. *Soft Matter, 18,* 1112-1148.
- 3. Huang, M., Wang, H. Y., Mackey, C., et al. (2023). YAP at the Crossroads of Biomechanics and Drug Resistance in Human Cancer. *International Journal of Molecular Science*, *24*(*15*), 12491.
- 4. Liang, C. Y., Zhang, Q., Chen, X., et al. (2022). Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. *Biomaterials, 290,* 121823.
- Liang, C. Y., Huang, M., Tanaka, M., et al. (2023). Functional Interrogation of Ca²⁺ Signals in Human Cancer Cells *In Vitro* and *Ex Vivo* by Fluorescent Microscopy and Molecular Tools. *Methods in Molecular Biology*, 2679, 95-125.