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ABSTRACT	
In	recent	years,	machine	learning	(ML)	has	emerged	as	a	powerful	tool	for	addressing	complex	problems	in	
the	realms	of	science	and	engineering.	However,	the	effectiveness	of	many	state-of-the-art	ML	techniques	is	
hindered	 by	 the	 limited	 availability	 of	 adequate	 data,	 leading	 to	 issues	 of	 robustness	 and	 convergence.	
Consequently,	 inferences	 drawn	 from	 such	models	 are	 often	 based	 on	 partial	 information.	 In	 a	 seminal	
contribution,	 Raissi	 et	 al.	 [1]	 introduced	 the	 concept	 of	 physics	 informed	 neural	 networks	 (PINNs),	
presenting	a	novel	paradigm	in	the	domain	of	function	approximation	by	artificial	neural	networks	(ANNs).	
This	advancement	marks	a	significant	step	forward	in	leveraging	ML	for	solving	complex	problems,	offering	
a	promising	avenue	for	enhancing	the	robustness	and	reliability	of	ML	models	in	scientific	and	engineering	
applications.	
PINNs	represent	a	novel	approach	to	solving	partial	differential	equations	(PDEs)	using	machine	learning.	
PINNs	are	particularly	useful	in	scenarios	where	data	is	limited,	as	they	can	leverage	both	the	available	data	
and	the	underlying	physics	of	the	problem.	The	key	idea	behind	PINNs	is	to	incorporate	the	governing	PDEs	
into	the	neural	network's	training	process.	This	allows	the	model	to	learn	the	solution	to	the	PDEs	directly,	
without	 relying	 on	 traditional	 numerical	 solvers.	 By	 combining	 data-driven	 learning	 with	 physical	
principles,	PINNs	offer	a	promising	avenue	for	solving	complex	PDEs	efficiently	and	accurately.	
In	this	study,	we	propose	a	PINN	framework	to	tackle	solid	mechanics	problems,	with	a	specific	focus	on	
handling	 multi-step	 loading	 scenarios.	 While	 our	 formulation	 is	 applicable	 to	 a	 wide	 range	 of	 solid	
mechanics	problems,	we	concentrate	on	the	realm	of	two-dimensional	hyperelasticity.	
We	demonstrate	the	efficacy	of	our	approach	through	a	case	study	involving	a	hyperelastic	plate	subjected	
to	compression,	where	the	displacement	load	is	applied	incrementally.	To	construct	our	loss	function,	we	
utilize	the	deep	collocation	method	[2].	In	order	to	enhance	the	accuracy	of	our	model,	we	train	it	using	a	
combination	of	the	Adam	[3]	and	L-BFGS	optimizers.	
We	validate	our	results	by	comparing	the	displacement	and	Cauchy	stress	obtained	from	our	PINN	model	
with	those	from	a	standard	finite	element	analysis	(FEA).	Our	findings	indicate	that	the	results	obtained	
from	the	PINN	model	are	in	excellent	agreement	with	those	from	FEA,	demonstrating	the	effectiveness	of	
our	approach	 in	accurately	 capturing	 the	behavior	of	 solid	mechanics	 systems	under	multi-step	 loading	
conditions.	
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